A Note on Finding Dual Feedback Vertex Set

For an edge-bicolored graph $G$ where each edge is colored either red or blue, a vertex set $S$ is a dual feedback vertex set if $S$ hits all blue cycles and red cycles of $G$. In this paper, we show that a dual feedback vertex set of size at most $k$ can be found in time $O^*(c_1^k)$ and all minimal dual feedback vertex set of size at most $k$ can be enumerated in time $O^*(c_2^{k^2 + k})$ by compact representations for constants $c_1$ and $c_2$.

[1]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[2]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[3]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[4]  Yoichi Iwata,et al.  Half-integrality, LP-branching, and FPT Algorithms , 2016, SIAM J. Comput..

[5]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[6]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[7]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[8]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[9]  G DowneyRod,et al.  Fixed-Parameter Tractability and Completeness I , 1995 .

[10]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, STOC.

[11]  Leizhen Cai,et al.  Dual Connectedness of Edge-Bicolored Graphs and Beyond , 2014, MFCS.

[12]  Michal Pilipczuk,et al.  On Group Feedback Vertex Set Parameterized by the Size of the Cutset , 2012, WG.

[13]  Saket Saurabh,et al.  Linear Time Parameterized Algorithms for Subset Feedback Vertex Set , 2015, ICALP.

[14]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[15]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[16]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[17]  Leizhen Cai,et al.  Parameterized Complexity of Cardinality Constrained Optimization Problems , 2008, Comput. J..

[18]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[19]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[20]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[21]  Noga Alon,et al.  Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs , 2007, Algorithmica.