Systematic and design of noncentrosymmetric sulfides and selenides for nonlinear optics
暂无分享,去创建一个
[1] V. Atuchin,et al. Shortest chemical bond length as a criterion for searching new noncentrosymmetric niobate and tantalate crystals with high optical nonlinearity , 2005 .
[2] Dongfeng Xue,et al. Dielectric properties of I-III- VI 2 -type chalcopyrite semiconductors , 2000 .
[3] J. Burie,et al. Widely tunable continuous-wave mid-infrared radiation (5.5-11 microm) by difference-frequency generation in LiInS2 crystal. , 2005, Applied optics.
[4] B. F. Levine,et al. Bond-Charge Calculation of Nonlinear Optical Susceptibilities for Various Crystal Structures , 1973 .
[5] K. Aizu. Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals , 1969 .
[6] S. Borisov,et al. Crystal-chemical aspects of the structural similarity of rare earth polychalcogenides LnX2−x (x=0–0.25) , 1996 .
[7] B. I. Kidyarov,et al. Phenomenological modeling and design of new acentric crystals for optoelectronics , 2004 .
[8] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[9] B. I. Kidyarov,et al. Shortest chemical bond length as a criterion for searching new noncentrosymmetric phosphate crystals , 2004 .
[10] N. V. Pervukhina,et al. Crystal Chemistry of Dichalcogenides MX2 , 2001 .
[11] S. K. Kurtz,et al. A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .
[12] R. D. Shannon,et al. Effective ionic radii in oxides and fluorides , 1969 .
[13] D. Nikogosyan,et al. Nonlinear Optical Crystals: A Complete Survey , 2005 .
[14] B. Levine. d-Electron Effects on Bond Susceptibilities and Ionicities , 1973 .