On synchronization of chaotic systems
暂无分享,去创建一个
[1] D. Aeyels. GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS , 1981 .
[2] Ott,et al. Enhancing synchronism of chaotic systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[3] H. Sullivan. Ionic Channels of Excitable Membranes, 2nd Ed. , 1992, Neurology.
[4] Chai Wah Wu,et al. A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .
[5] L. Chua,et al. A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .
[6] J. Gauthier,et al. A simple observer for nonlinear systems applications to bioreactors , 1992 .
[7] A. Schaft,et al. Mechanical Nonlinear Control Systems , 1990 .
[8] J. Salz,et al. Synchronization Systems in Communication and Control , 1973, IEEE Transactions on Communications.
[9] Morgül,et al. Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] X. Xia,et al. Nonlinear observer design by observer error linearization , 1989 .
[11] Tomasz Kapitaniak,et al. Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics , 1996 .
[12] He,et al. Analysis and synthesis of synchronous periodic and chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Alexander L. Fradkov,et al. On self-synchronization and controlled synchronization , 1997 .
[15] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[16] D. Aeyels. On the number of samples necessary to achieve observability , 1981 .
[17] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[18] F. Takens. Detecting strange attractors in turbulence , 1981 .
[19] Hui-Yu Tsai,et al. Lorenz Equations 之研究 , 1998 .
[20] Henk Nijmeijer,et al. On the (controlled) synchronization of dynamical systems , 1997 .
[21] Alan V. Oppenheim,et al. Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .
[22] Stability , 1973 .
[23] J. Yorke,et al. Coping with chaos. Analysis of chaotic data and the exploitation of chaotic systems , 1994 .
[24] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[25] G. P. Szegö,et al. Stability theory of dynamical systems , 1970 .
[26] G. Besancon. Contributions à l'étude et à l'observation des systèmes non linéaires avec recours au calcul formel , 1996 .
[27] Henk Nijmeijer. On chaotic observer design , 1997 .
[28] A. Krener,et al. Nonlinear observers with linearizable error dynamics , 1985 .
[29] Peng,et al. Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.
[30] Michael C. Mackey,et al. From Clocks to Chaos , 1988 .
[31] Thomas Kailath,et al. Linear Systems , 1980 .
[32] H. Nijmeijer,et al. On output linearization of observable dynamics , 1993 .
[33] Louis M. Pecora,et al. Synchronizing chaotic circuits , 1991 .
[34] Ilʹi︠a︡ Izrailevich Blekhman,et al. Synchronization in science and technology , 1988 .
[35] Henk Nijmeijer,et al. An observer looks at synchronization , 1997 .
[36] Maciej Ogorzalek,et al. Taming chaos. I. Synchronization , 1993 .
[37] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[38] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[39] A. Winfree. The geometry of biological time , 1991 .
[40] J. A. Stewart,et al. Nonlinear Time Series Analysis , 2015 .
[41] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[42] R. G. Medhurst,et al. Topics in the Theory of Random Noise , 1969 .