RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments

Semantic segmentation of surgical instruments plays a crucial role in robot-assisted surgery. However, accurate segmentation of cataract surgical instruments is still a challenge due to specular reflection and class imbalance issues. In this paper, an attention-guided network is proposed to segment the cataract surgical instrument. A new attention module is designed to learn discriminative features and address the specular reflection issue. It captures global context and encodes semantic dependencies to emphasize key semantic features, boosting the feature representation. This attention module has very few parameters, which helps to save memory. Thus, it can be flexibly plugged into other networks. Besides, a hybrid loss is introduced to train our network for addressing the class imbalance issue, which merges cross entropy and logarithms of Dice loss. A new dataset named Cata7 is constructed to evaluate our network. To the best of our knowledge, this is the first cataract surgical instrument dataset for semantic segmentation. Based on this dataset, RAUNet achieves state-of-the-art performance 97.71% mean Dice and 95.62% mean IOU.

[1]  Nassir Navab,et al.  Concurrent Segmentation and Localization for Tracking of Surgical Instruments , 2017, MICCAI.

[2]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[3]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Sébastien Ourselin,et al.  Real-Time Segmentation of Non-rigid Surgical Tools Based on Deep Learning and Tracking , 2016, CARE@MICCAI.

[5]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[6]  Jason J. Corso,et al.  Detection and Localization of Robotic Tools in Robot-Assisted Surgery Videos Using Deep Neural Networks for Region Proposal and Detection , 2017, IEEE Transactions on Medical Imaging.

[7]  Zeng-Guang Hou,et al.  RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[8]  Alexey Shvets,et al.  TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation , 2018, Computer-Aided Analysis of Gastrointestinal Videos.

[9]  D. Anderson,et al.  The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn? , 2013, Eye.

[10]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[11]  Saeid Nahavandi,et al.  Surgical tool segmentation using a hybrid deep CNN-RNN auto encoder-decoder , 2017, 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[12]  Pengfei Xiong,et al.  Pyramid Attention Network for Semantic Segmentation , 2018, BMVC.