Estimation of effective connectivity via data-driven neural modeling

This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination.

[1]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[2]  Florian Mormann,et al.  Seizure prediction , 2008, Scholarpedia.

[3]  Wolfgang Maass,et al.  Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates , 2009, Journal of Physiology-Paris.

[4]  Jack Cowan,et al.  Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience , 2012 .

[5]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[6]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[7]  Dragan Nesic,et al.  A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation , 2004, Autom..

[8]  Eric A. Wan,et al.  Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation , 1996, NIPS.

[9]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[10]  Bin He,et al.  Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach , 2014, Clinical Neurophysiology.

[11]  Jiang Wang,et al.  A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential. , 2009, Chaos.

[12]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[13]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[14]  Stephen Coombes,et al.  The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience , 2012, The European journal of neuroscience.

[15]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[16]  Frank Marten,et al.  Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: Application to epilepsy seizure evolution , 2012, NeuroImage.

[17]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[18]  Karl J. Friston,et al.  Neural masses and fields in dynamic causal modeling , 2013, Front. Comput. Neurosci..

[19]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[20]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[22]  Visakan Kadirkamanathan,et al.  Spatiotemporal multi-resolution approximation of the Amari type neural field model , 2013, NeuroImage.

[23]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[24]  L. Imsland,et al.  Constrained state estimation using the Unscented Kalman Filter , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[25]  Barry Horwitz,et al.  The elusive concept of brain connectivity , 2003, NeuroImage.

[26]  Olivier David,et al.  Dynamic causal models and autopoietic systems. , 2007, Biological research.

[27]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[28]  Thomas R. Knösche,et al.  A Realistic Neural Mass Model of the Cortex with Laminar-Specific Connections and Synaptic Plasticity – Evaluation with Auditory Habituation , 2013, PloS one.

[29]  Klaus Lehnertz,et al.  Seizure prediction by nonlinear EEG analysis. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[30]  B. Horwitz,et al.  Functional Interactions of the Inferior Frontal Cortex during the Processing of Words and Word-like Stimuli , 2001, Neuron.

[31]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[32]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[33]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[34]  Kaspar Anton Schindler,et al.  Intermittent spike–wave dynamics in a heterogeneous, spatially extended neural mass model , 2011, NeuroImage.

[35]  Hamid Soltanian-Zadeh,et al.  Multi-area neural mass modeling of EEG and MEG signals , 2010, NeuroImage.

[36]  Steven J Schiff,et al.  Kalman filter control of a model of spatiotemporal cortical dynamics , 2008, BMC Neuroscience.

[37]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[38]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[39]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[40]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[41]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[42]  Olaf Sporns,et al.  The human connectome: Origins and challenges , 2013, NeuroImage.

[43]  J V Haxby,et al.  Network analysis of PET-mapped visual pathways in Alzheimer type dementia. , 1995, Neuroreport.

[44]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[45]  H. Musoff,et al.  Unscented Kalman Filter , 2015 .

[46]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[47]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[48]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[49]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[50]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[51]  David B. Grayden,et al.  Patient-specific neural mass modeling - stochastic and deterministic methods , 2013 .

[52]  D R Freestone,et al.  A data-driven framework for neural field modeling , 2011, NeuroImage.

[53]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[54]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[55]  John R. Terry,et al.  The dynamic evolution of focal‐onset epilepsies – combining theoretical and clinical observations , 2012, The European journal of neuroscience.

[56]  Mauro Ursino,et al.  The generation of rhythms within a cortical region: Analysis of a neural mass model , 2010, NeuroImage.

[57]  Xiaoli Li,et al.  Multi-channel neural mass modelling and analyzing , 2011, Science China Information Sciences.

[58]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[59]  Mario di Bernardo,et al.  Characterisation of cortical activity in response to deep brain stimulation of ventral–lateral nucleus: Modelling and experiment , 2009, Journal of Neuroscience Methods.

[60]  Peter A. Cook,et al.  Nonlinear dynamical systems , 1986 .

[61]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[62]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[63]  Xian Liu,et al.  Parameter estimation and control for a neural mass model based on the unscented Kalman filter. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Bin Deng,et al.  A combined method to estimate parameters of the thalamocortical model from a heavily noise-corrupted time series of action potential. , 2014, Chaos.

[65]  K Lehnertz,et al.  Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  C. Koch,et al.  What is the function of the claustrum? , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[68]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .