Trajectory generation and control for quadrotors

This thesis presents contributions to the state-of-the-art in quadrotor control, payload transportation with single and multiple quadrotors, and trajectory generation for single and multiple quadrotors. In Ch. 2 we describe a controller capable of handling large roll and pitch angles that enables a quadrotor to follow trajectories requiring large accelerations and also recover from extreme initial conditions. In Ch. 3 we describe a method that allows teams of quadrotors to work together to carry payloads that they could not carry individually. In Ch. 4 we discuss an online parameter estimation method for quadrotors transporting payloads which enables a quadrotor to use its dynamics in order to learn about the payload it is carrying and also adapt its control law in order to improve tracking performance. In Ch. 5 we present a trajectory generation method that enables quadrotors to fly through narrow gaps at various orientations and perch on inclined surfaces. Chapter 6 discusses a method for generating dynamically optimal trajectories through a series of predefined waypoints and safe corridors and Ch. 7 extends that method to enable heterogeneous quadrotor teams to quickly rearrange formations and avoid a small number of obstacles. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Mechanical Engineering & Applied Mechanics First Advisor Vijay Kumar

[1]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[2]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Raffaello D'Andrea,et al.  Quadrocopter Trajectory Generation and Control , 2011 .

[4]  Raffaello D'Andrea,et al.  A simple learning strategy for high-speed quadrocopter multi-flips , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  Camillo J. Taylor,et al.  Control of a Quadrotor Helicopter Using Dual Camera Visual Feedback , 2005, Int. J. Robotics Res..

[6]  Claire J. Tomlin,et al.  Design and Analysis of Hybrid Systems, with Applications to Robotic Aerial Vehicles , 2009, ISRR.

[7]  R. Murray,et al.  Real‐time trajectory generation for differentially flat systems , 1998 .

[8]  Alborz Geramifard,et al.  On the Design and Use of a Micro Air Vehicle to Track and Avoid Adversaries , 2010, Int. J. Robotics Res..

[9]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[10]  Ben M. Chen,et al.  An overview on development of miniature unmanned rotorcraft systems , 2010 .

[11]  Nicholas Roy,et al.  Construction of Cubic Structures with Quadrotor Teams , 2012 .

[12]  Jie Yu,et al.  Comparison of nonlinear control design techniques on a model of the Caltech ducted fan , 2001, at - Automatisierungstechnik.

[13]  Gerd Hirzinger,et al.  Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  J. How,et al.  Multi-vehicle path planning for non-line of sight communication , 2006, 2006 American Control Conference.

[15]  J. K. Salisbury,et al.  Kinematic and Force Analysis of Articulated Mechanical Hands , 1983 .

[16]  Giuseppe Carlo Calafiore,et al.  Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .

[17]  Jonathan P. How,et al.  Plume Avoidance Maneuver Planning Using Mixed Integer Linear Programming , 2001 .

[18]  M. Kawato,et al.  Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion , 1990, Biological Cybernetics.

[19]  Michele Lanzetta,et al.  Scaling hard vertical surfaces with compliant microspine arrays , 2005, Robotics: Science and Systems.

[20]  Robert Mahony,et al.  Modelling and control of a quad-rotor robot , 2006 .

[21]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Russ Tedrake,et al.  LQR-trees: Feedback motion planning on sparse randomized trees , 2009, Robotics: Science and Systems.

[24]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Nicholas Roy,et al.  Autonomous Flight in Unknown Indoor Environments , 2009 .

[26]  J. How,et al.  Receding horizon path planning with implicit safety guarantees , 2004, Proceedings of the 2004 American Control Conference.

[27]  John Hauser,et al.  On the stability of receding horizon control with a general terminal cost , 2005, IEEE Transactions on Automatic Control.

[28]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[29]  M. Caccia,et al.  Modeling and identification of open-frame variable configuration unmanned underwater vehicles , 2000, IEEE Journal of Oceanic Engineering.

[30]  Petros A. Ioannou,et al.  Adaptive control tutorial , 2006, Advances in design and control.

[31]  J. Wen,et al.  The attitude control problem , 1991 .

[32]  Mark R. Cutkosky,et al.  Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles , 2010, J. Intell. Robotic Syst..

[33]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[34]  Vaibhav Ghadiok,et al.  Autonomous indoor aerial gripping using a quadrotor , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[36]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[37]  Marco Beat Gerig Modeling, guidance, and control of aerobatic maneuvers of an autonomous helicopter , 2008 .

[38]  Samir Bouabdallah,et al.  Design and control of quadrotors with application to autonomous flying , 2007 .

[39]  Vijay Kumar,et al.  Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors , 2010, ISER.

[40]  Vijay Kumar,et al.  Planning and control for cooperative manipulation and transportation with aerial robots , 2011, Int. J. Robotics Res..

[41]  Vijay Kumar,et al.  Cooperative manipulation and transportation with aerial robots , 2009, Auton. Robots.

[42]  Vijay Kumar,et al.  Cooperative Grasping and Transport Using Multiple Quadrotors , 2010, DARS.

[43]  Russ Tedrake,et al.  Experiments in Fixed-Wing UAV Perching , 2008 .

[44]  Aaron M. Dollar,et al.  Hovering Stability of Helicopters With Elastic Constraints , 2010 .

[45]  Pieter Abbeel,et al.  Apprenticeship learning and reinforcement learning with application to robotic control , 2008 .

[46]  Vijay Kumar,et al.  Design, modeling, estimation and control for aerial grasping and manipulation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Ilan Kroo,et al.  The Mesicopter: A Miniature Rotorcraft Concept Phase II Interim Report , 2000 .

[48]  Konstantin Kondak,et al.  Generic slung load transportation system using small size helicopters , 2009, 2009 IEEE International Conference on Robotics and Automation.

[49]  Daniel Mellinger,et al.  Control of Quadrotors for Robust Perching and Landing , 2010 .

[50]  Paul A. Beardsley,et al.  Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots , 2010, DARS.

[51]  Vijay Kumar,et al.  The GRASP Multiple Micro-UAV Testbed , 2010, IEEE Robotics & Automation Magazine.

[52]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[53]  Claire J. Tomlin,et al.  Quadrotor Helicopter Trajectory Tracking Control , 2008 .

[54]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[55]  Nicholas Roy,et al.  Towards A Swarm of Agile Micro Quadrotors , 2013 .

[56]  B. Moor,et al.  Mixed integer programming for multi-vehicle path planning , 2001, 2001 European Control Conference (ECC).

[57]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[58]  Benjamin Hein,et al.  Hover Performance of a Micro Air Vehicle: Rotors at Low Reynolds Number , 2007 .

[59]  Maxim Likhachev,et al.  Planning for landing site selection in the aerial supply delivery , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[60]  Marc Pollefeys,et al.  Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing , 2011, 2011 IEEE International Conference on Robotics and Automation.

[61]  Raffaello D'Andrea,et al.  The Distributed Flight Array , 2011 .

[62]  Eric Feron,et al.  Experiments with small helicopter automated landings at unusual attitudes , 2007, ArXiv.

[63]  S. Shankar Sastry,et al.  Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[64]  Claire J. Tomlin,et al.  Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice , 2010, 2010 IEEE International Conference on Robotics and Automation.

[65]  P. Olver Nonlinear Systems , 2013 .

[66]  Pieter Abbeel,et al.  Parameterized maneuver learning for autonomous helicopter flight , 2010, 2010 IEEE International Conference on Robotics and Automation.