Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: lessons for HyspIRI.

Abstract Fine-scale variation of vegetation structure in dryland systems, such as the Great Basin in the western US, is critical to understanding ecosystem responses to changing land-use conditions. High resolution airborne hyperspectral (HyMap) and LiDAR datasets acquired across independent collection sites can reduce uncertainty in predictive ecosystem modeling and provide a basis for regional upscaling to satellite observations of structural metrics such as cover and height. In the first part of our study, we combined ground reference and airborne data collected at three sagebrush-steppe locations and used the statistical data mining tool random forests to identify remote sensing variables most relevant to estimating shrub cover. In the second part of our study, we hypothesized that vegetation indices derived from hyperspectral satellite observations would not only reliably predict shrub cover but also be relatable to shrub height; thereby augmenting the collection of vertical structure estimates from future satellite platforms such as ICESAT-2. To test this hypothesis, we simulated HyspIRI observations to derive variables to relate to LiDAR-based estimates of shrub cover and height. We generated the same hyperspectral variables as in the first part of this study but at coarser resolution (60 m) and we again used random forests to model shrub cover and height and identify predictors of greatest importance. Overall, combining LiDAR and HyMap datasets at the airborne scale improved shrub cover model results ( r 2  = 0.58) compared to LiDAR alone ( r 2  = 0.49). Primary shrub cover variables of importance were H IQR (the interquartile range of height of all LiDAR vegetation returns), H MAD (median absolute deviation from median height of all LiDAR vegetation returns) , a narrowband index sensitive to anthocyanins, the ratio of LiDAR vegetation returns to total returns, and a red to green ratio. In addition, HyspIRI-simulated narrowband vegetation indices were relatable to LiDAR-derived shrub cover and height variables ( r 2 ranging from 0.63 to 0.71) with relatively low root mean square error.

[1]  J F Reynolds,et al.  Biological Feedbacks in Global Desertification , 1990, Science.

[2]  Marco Mancini,et al.  Calibration of aerodynamic roughness over the Tibetan Plateau with Ensemble Kalman Filter analysed heat flux , 2012 .

[3]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[4]  N. Glenn,et al.  LiDAR measurement of sagebrush steppe vegetation heights , 2006 .

[5]  Collin G. Homer,et al.  Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[7]  D. Stow,et al.  Monitoring shrubland habitat changes through object-based change identification with airborne multispectral imagery , 2008 .

[8]  Xulin Guo,et al.  Estimation of grassland CO2 exchange rates using hyperspectral remote sensing techniques , 2008 .

[9]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[10]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[11]  B. Rock,et al.  Detection of changes in leaf water content using Near- and Middle-Infrared reflectances , 1989 .

[12]  Jessica J. Mitchell,et al.  Errors in LiDAR-derived shrub height and crown area on sloped terrain , 2011 .

[13]  W. R. Windham,et al.  Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. , 1995, Tree physiology.

[14]  P. Fernandes,et al.  Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands , 2012 .

[15]  John A. Gamon,et al.  Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index , 2006 .

[16]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  E. Ben-Dor Imaging Spectrometry For Urban Applications , 2002 .

[19]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[20]  Mark A. Stephen,et al.  Space laser transmitter development for ICESat-2 mission , 2010, LASE.

[21]  A. Gitelson,et al.  Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶ , 2002, Photochemistry and photobiology.

[22]  Walter G. Whitford,et al.  Presence/absence of a keystone species as an indicator of rangeland health , 2002 .

[23]  Stuart P. Hardegree,et al.  Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe , 2011 .

[24]  Simon J. Hook,et al.  Synergies Between VSWIR and TIR Data for the Urban Environment: An Evaluation of the Potential for the Hyperspectral Infrared Imager (HyspIRI) , 2012 .

[25]  Samia Boukir,et al.  Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests , 2011 .

[26]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[27]  Fred A. Kruse,et al.  Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry - Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data , 2011, Remote. Sens..

[28]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[29]  Fabian Ewald Fassnacht,et al.  Forest structure modeling with combined airborne hyperspectral and LiDAR data , 2012 .

[30]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[31]  P. Gessler,et al.  Forest Service-- National AgroforestryCenter 1-1-2010 Landscape-scale parameterization of a tree-level forest growth model : a k-nearest neighbor imputation approach incorporating LiDAR data , 2013 .

[32]  N. West,et al.  Ecology and management of sage-grouse and sage-grouse habitat , 2004 .

[33]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[34]  Jeffrey T. Morisette,et al.  Comparison of simulated HyspIRI with two multispectral sensors for invasive species mapping. , 2014 .

[35]  A. Parsons,et al.  Impact of connectivity on the modeling of overland flow within semiarid shrubland environments , 2007 .

[36]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[37]  Jessica J. Mitchell,et al.  Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics , 2011 .

[38]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[39]  S. Pacala,et al.  A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED) , 2001 .

[40]  Nancy F. Glenn,et al.  Leafy Spurge (Euphorbia esula) Classification Performance Using Hyperspectral and Multispectral Sensors , 2009 .

[41]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[42]  Andrew Starr,et al.  A Review of data fusion models and architectures: towards engineering guidelines , 2005, Neural Computing & Applications.

[43]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[44]  Rupesh Shrestha,et al.  A Slope-based Method for Matching Elevation Surfaces , 2011 .

[45]  Jay E. Anderson,et al.  LANDSCAPE‐SCALE CHANGES IN PLANT SPECIES ABUNDANCE AND BIODIVERSITY OF A SAGEBRUSH STEPPE OVER 45 YEARS , 2001 .

[46]  A. Rango,et al.  Combining Decision Trees with Hierarchical Object-oriented Image Analysis for Mapping Arid Rangelands , 2007 .

[47]  J. Peñuelas,et al.  Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) , 1997 .

[48]  M. Lewis,et al.  Spectral characterization of Australian arid zone plants , 2002 .

[49]  S. Wofsy,et al.  Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2 , 2009 .

[50]  Norbert Pfeifer,et al.  ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry Over The Netherlands , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[51]  R. Tateishi,et al.  Relationships between percent vegetation cover and vegetation indices , 1998 .

[52]  Moses Azong Cho,et al.  Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images , 2013 .

[53]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[54]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[55]  Nicholas L. Crookston,et al.  yaImpute: An R Package for kNN Imputation , 2008 .

[56]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[57]  A. Gitelson,et al.  Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶ , 2001, Photochemistry and photobiology.

[58]  X. Zeng,et al.  Growing temperate shrubs over arid and semiarid regions in the Community Land Model–Dynamic Global Vegetation Model , 2008 .

[59]  R. D. Ramsey,et al.  Evaluating the Use of Landsat 30m Enhanced Thematic Mapper to Monitor Vegetation Cover in Shrub‐Steppe Environments , 2004 .

[60]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[61]  J. Connelly,et al.  Greater Sage-Grouse and Sagebrush: An Introduction to the Landscape , 2011 .

[62]  Robert Wright,et al.  Using EO-1 Hyperion Data as HyspIRI Preparatory Data Sets for Volcanology Applied to Mt Etna, Italy , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[63]  J. Gamon,et al.  The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels , 1997, Oecologia.

[64]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[65]  M. Maltamo,et al.  Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics , 2010 .

[66]  Rupesh Shrestha,et al.  Single and Multi-Date Landsat Classifications of Basalt to Support Soil Survey Efforts , 2013, Remote. Sens..

[67]  P. Greig-Smith,et al.  QUANTITATIVE PLANT ECOLOGY , 1959 .

[68]  Reza Jafari,et al.  Arid land characterisation with EO-1 Hyperion hyperspectral data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[69]  Gregory S. Okin,et al.  A new model of wind erosion in the presence of vegetation , 2008 .

[70]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[71]  John A. Gamon,et al.  Assessing leaf pigment content and activity with a reflectometer , 1999 .

[72]  Patrick E. Clark,et al.  Aboveground Total and Green Biomass of Dryland Shrub Derived from Terrestrial Laser Scanning , 2014 .

[73]  David B. Lobell,et al.  Hyperion Studies Of Crop Stress In Mexico , 2004 .

[74]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[75]  A. Gitelson,et al.  Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening , 1999 .

[76]  Lalji Dixit,et al.  Quantitative Analysis by Derivative Electronic Spectroscopy , 1985 .

[77]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[78]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[79]  P. Moorcroft,et al.  Imaging spectroscopy‐ and lidar‐derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics , 2014 .

[80]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[81]  Steven D. Prager,et al.  Estimating sagebrush cover in semi-arid environments using Landsat Thematic Mapper data , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[82]  Robert E. Keane,et al.  Integrating ecosystem sampling, gradient modeling, remote sensing, and ecosystem simulation to create spatially explicit landscape inventories , 2002 .

[83]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[84]  Nancy F. Glenn,et al.  Remote sensing of sagebrush canopy nitrogen , 2012 .

[85]  A. Hudak,et al.  A cross-comparison of field, spectral, and lidar estimates of forest canopy cover , 2009 .

[86]  Jörg Müller,et al.  Modelling Forest α-Diversity and Floristic Composition - On the Added Value of LiDAR plus Hyperspectral Remote Sensing , 2012, Remote. Sens..

[87]  Bo-Cai Gao,et al.  Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll $(\hbox{fAPAR}_{\rm chl})$ and Leaf Water Content (LWC) , 2012, IEEE Transactions on Geoscience and Remote Sensing.