Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue

Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as “self-heating tests.” This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multiaxiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of microplasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly-obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach.

[1]  W. Weibull A statistical theory of the strength of materials , 1939 .

[2]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[3]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[5]  H. Harig,et al.  ESTIMATION OF THE FATIGUE LIMIT BY PROGRESSIVELY‐INCREASING LOAD TESTS , 1980 .

[6]  R. Harry,et al.  Measuring the Actual Endurance Limit of One Specimen Using a Nondestructive Method , 1981 .

[7]  N. Dmitriev,et al.  Thermal radiation of steel specimens under cyclic loading , 1989 .

[8]  William A. Curtin,et al.  Exact theory of fibre fragmentation in a single-filament composite , 1991 .

[9]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[10]  Jean Lemaitre,et al.  Damage 90: a post processor for crack initiation , 1994 .

[11]  M. P. Luong,et al.  Infrared thermographic scanning of fatigue in metals , 1995 .

[12]  Jean-Yves Bérard,et al.  Détermination de la limite d’endurance des matériaux par thermographie infrarouge. Application sur un bras de suspension , 1998 .

[13]  B. Fedelich A stochastic theory for the problem of multiple surface crack coalescence , 1998 .

[14]  Franck Morel A FATIGUE LIFE PREDICTION METHOD BASED ON A MESOSCOPIC APPROACH IN CONSTANT AMPLITUDE MULTIAXIAL LOADING , 1998 .

[15]  Antonino Risitano,et al.  Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .

[16]  André Chrysochoos,et al.  An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .

[17]  Kazimierz Sobczyk,et al.  Stochastic Modeling of Microstructures , 2001 .

[18]  François Hild,et al.  Dynamic fragmentation of brittle solids: a multi-scale model , 2002 .

[19]  André Galtier,et al.  Influence de la microstructure des aciers sur leur propriétés mécaniques , 2002 .

[20]  Thierry Palin-Luc,et al.  A volumetric energy based high cycle multiaxial fatigue citerion , 2003 .

[21]  Cédric Doudard Détermination rapide des propriétés en fatigue à grand nombre de cycles à partir d'essais d'échauffement , 2004 .

[22]  François Hild,et al.  Identification of the scatter in high cycle fatigue from temperature measurements , 2004 .

[23]  B. Yang,et al.  Temperature evolution during fatigue damage , 2005 .

[24]  François Hild,et al.  A probabilistic two-scale model for high-cycle fatigue life predictions , 2005 .

[25]  Raffaella Sesana,et al.  A new iteration method for the thermographic determination of fatigue limit in steels , 2005 .

[26]  F. Hild,et al.  Determination of an HCF criterion by thermal measurements under biaxial cyclic loading , 2007 .

[27]  François Hild,et al.  A probabilistic model for multiaxial high cycle fatigue , 2007 .

[28]  Martin Poncelet,et al.  Multiaxialité, hétérogénéités intrinsèques et structurales des essais d'auto-échauffement et de fatigue à grand nombre de cycles , 2007 .

[29]  F. Hild,et al.  Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings , 2007 .