A Fully Discrete Variational Scheme for Solving Nonlinear Fokker-Planck Equations in Multiple Space Dimensions
暂无分享,去创建一个
[1] H. Hadwiger,et al. Brunn-Minkowskischer Satz und Isoperimetrie , 1956 .
[2] Quentin Mérigot,et al. Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.
[3] José A. Carrillo,et al. Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..
[4] Giovanni Russo,et al. Deterministic diffusion of particles , 1990 .
[5] Michael Westdickenberg,et al. A time discretization for the pressureless gas dynamics equations , 2014 .
[6] M. Agueh,et al. One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces , 2013 .
[7] J. Vázquez. An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .
[8] A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation , 2010 .
[9] Daniel Matthes,et al. A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation , 2017, Found. Comput. Math..
[10] J. Carrillo,et al. On the asymptotic behavior of the gradient flow of a polyconvex functional , 2009 .
[11] D. Matthes,et al. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation , 2013, 1301.0747.
[12] E. Tadmor. Spectral methods for time dependent problems , 1990 .
[13] Robert D. Russell,et al. Self–similar numerical solutions of the porous–medium equation using moving mesh methods , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[14] L. Ambrosio,et al. Stability of flows associated to gradient vector fields and convergence of iterated transport maps , 2006, manuscripta mathematica.
[15] Marie-Therese Wolfram,et al. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms , 2016, J. Comput. Phys..
[16] J. A. Carrillo,et al. Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..
[17] L. C. Evans,et al. Diffeomorphisms and Nonlinear Heat Flows , 2005, SIAM Journal on Mathematical Analysis.
[18] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[19] Daniel Matthes,et al. A gradient flow scheme for nonlinear fourth order equations , 2010 .
[20] E. Socolovsky,et al. A numerical procedure for the porous media equation , 1985 .
[21] Michael Westdickenberg,et al. VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS , 2008, 0807.3573.
[22] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[23] Laurent Gosse,et al. Identification of Asymptotic Decay to Self-Similarity for One-Dimensional Filtration Equations , 2006, SIAM J. Numer. Anal..
[24] R. McCann. A Convexity Principle for Interacting Gases , 1997 .