Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status

Non‐oxide ceramic fibers are of considerable interest due to the ability to combine the high performance, especially high temperature thermal and creep resistance, with the structural advantages of fibers including their use as reinforcements for metal (MMCs) and ceramic matrix composites (CMCs). In this paper the development of CVD SiC fibers and three generations of polymer derived SiC fibers over the past 50 years are discussed, illustrating the effect of fiber precursor and processing on the microstructure and physical properties of the non‐oxide ceramic fibers. Additionally recent advances in research and development related to fibers from SiC and SiCN systems are presented with discussion of the current focus on reducing the costs of the fiber processing, while increasing their thermostructural stability.

[1]  Franziska Frankfurter,et al.  Ceramic Materials And Components For Engines , 2016 .

[2]  T. Schmalz,et al.  Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres , 2013 .

[3]  M. Weinmann,et al.  Chemistry, structure and processability of boron-modified polysilazanes as tailored precursors of ceramic fibers , 2012 .

[4]  Paolo Colombo,et al.  Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics , 2010 .

[5]  A. Nakahira,et al.  Synthesis and properties of ceramic fibers from polycarbosilane/polymethylphenylsiloxane polymer blends , 2010 .

[6]  A. Nakahira,et al.  High-temperature pyrolysis of ceramic fibers derived from polycarbosilane–polymethylhydrosiloxane polymer blends with porous structures , 2010, Journal of Materials Science.

[7]  Young‐Wook Kim,et al.  Melt spinning and metal chloride vapor curing process on polymethylsilsesquioxane as SiOC fiber precursor , 2009 .

[8]  M. Yoshikawa,et al.  Formation of Continuous Pore Structures in Si–C–O Fibers by Adjusting the Melt Spinning Condition of a Polycarbosilane–Polysiloxane Polymer Blend , 2009 .

[9]  M. Yoshikawa,et al.  Synthesis of SiC Based Fibers with Continuous Pore Structure by Melt- Spinning and Controlled Curing Method , 2009 .

[10]  R. Bordia,et al.  Processing, structure and properties of ceramic fibers , 2009 .

[11]  H. Ichikawa,et al.  Properties of Stoichiometric Silicon Carbide Fiber Derived from Polycarbosilane , 2008 .

[12]  T. Seguchi,et al.  Properties of the Low Oxygen Content SiC Fiber on High Temperature Heat Treatment , 2008 .

[13]  T. Seguchi,et al.  Thermomechanical Analysis of the Low Oxygen Silicon Carbide Fibers Derived from Polycarbosilane , 2008 .

[14]  H. Ichikawa,et al.  Thermal stability of the low oxygen silicon carbide fibers derived from polycarbosilane , 2008 .

[15]  G. Ziegler,et al.  New SiCN Fibers from the ABSE Polycarbosilazane , 2008 .

[16]  T. Yamamura,et al.  Thermal Stability and Chemical Corrosion Resistance of Newly Developed Continuous Si‐Zr‐C‐O Tyranno Fiber , 2008 .

[17]  M. Sacks,et al.  Polymer‐Derived SiC‐Based Fibers with High Tensile Strength and Improved Creep Resistance , 2008 .

[18]  Y. Kohtoku,et al.  New Type of SIC‐Sintered Fiber and its Composite Material , 2008 .

[19]  Youren Xu,et al.  Structure and Properties of Sylramic™ Silicon Carbide Fiber—A Polycrystalline, Stoichiometric β‐Sic Composition , 2008 .

[20]  J. DiCarlo,et al.  Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers , 2008 .

[21]  L. Heymann,et al.  Rheology and processability of multi-walled carbon nanotubes—ABSE polycarbosilazane composites , 2008 .

[22]  G. Ziegler,et al.  Processing of SICN‐Fibres Prepared from Polycarbosilazanes , 2007 .

[23]  G. Ziegler,et al.  Design of SICN ‐ Precursors for Various Applications , 2007 .

[24]  S. Kokott,et al.  Modifizierung des ABSE‐Polycarbosilazans mit Multi‐Walled Carbon Nanotubes zur Herstellung spinnfähiger Massen , 2007 .

[25]  H. Mabuchi,et al.  Melt Spinnable Blend Polymers of Polycarbosilane and Polysiloxane for Synthesis of Silicon Carbide Micro Tube Structures , 2007 .

[26]  G. Motz,et al.  Cross‐Linking via Electron Beam Treatment of a Tailored Polysilazane (ABSE) for Processing of Ceramic SiCN‐Fibers , 2007 .

[27]  H. Okuda,et al.  Degradation Mechanism of Amorphous Silicon Carbide Fiber due to Air-Exposure at High Temperatures , 2007 .

[28]  G. Motz Synthesis of SiCN-Precursors for Fibres and Matrices , 2006 .

[29]  謙爾 鈴木,et al.  有機-無機変換プロセスによる SiC 系セラミック繊維の合成 (総説) , 2006 .

[30]  宏伸 市川 電子線照射不融化によるポリカルボシランからの高性能 SiC 繊維の開発 (総説) , 2006 .

[31]  A. Bunsell,et al.  A review of the development of three generations of small diameter silicon carbide fibres , 2006 .

[32]  M. Weinmann,et al.  Chemical tailoring of single-source molecular and polymeric precursors for the preparation of ceramic fibers , 2006 .

[33]  M. Weinmann,et al.  Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion , 2005 .

[34]  P. May,et al.  High temperature properties of SiC and diamond CVD-monofilaments , 2005 .

[35]  Seth T. Taylor,et al.  Kinetics of Thermal, Passive Oxidation of Nicalon Fibers , 2005 .

[36]  T. Seguchi,et al.  Effect of Firing Temperature on the Thermal Stability of Low‐Oxygen Silicon Carbide Fibers , 2005 .

[37]  K. Kakimoto,et al.  Oxidation‐Induced Microstructural Change of Si‐Ti‐C‐O Fibers , 2005 .

[38]  R. Bhatt,et al.  Strength-degrading mechanisms for chemically-vapor-deposited SCS-6 silicon carbide fibers in an argon environment , 2005 .

[39]  T. Ishikawa Advances in inorganic fibers , 2005 .

[40]  J. Baltussen Polymeric and inorganic fibers , 2005 .

[41]  D. Sporn,et al.  A new type of precursor for fibers in the system Si–C , 2005 .

[42]  James A. DiCarlo,et al.  Non-oxide (Silicon Carbide) Fibers , 2005 .

[43]  J. Sakamoto,et al.  Microstructure and Oxidation Behavior of Silicon Carbide Fibers Derived from Polycarbosilane , 2004 .

[44]  A. Saeki,et al.  Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers , 2004 .

[45]  A. Idesaki,et al.  Development of Silicon Carbide Micro-Tube from Precursor Polymer by Radiation Oxidation , 2003 .

[46]  Y. Morisada,et al.  Oxidation behavior of Si-M-C-O fibers under wide range of oxygen partial pressures , 2002 .

[47]  Walter Krenkel,et al.  High Temperature Ceramic Matrix Composites , 2002 .

[48]  Masahiro Ito,et al.  Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers , 2001 .

[49]  R. Young,et al.  A microstructural study of silicon carbide fibres through the use of Raman microscopy , 2001 .

[50]  G. Chollon Oxidation behaviour of ceramic fibres from the Si-C-N-O system and related sub-systems , 2000 .

[51]  M. Sacks Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers , 1999 .

[52]  Sporn,et al.  Ceramic fibers for matrix composites in high-temperature engine applications , 1999, Science.

[53]  T. Seguchi,et al.  Use of Blended Precursors of Poly(vinylsilane) in Polycarbosilane for Silicon Carbide Fiber Synthesis with Radiation Curing , 1999 .

[54]  R. E. Tressler Recent developments in fibers and interphases for high temperature ceramic matrix composites , 1999 .

[55]  I. Jones,et al.  The microstructure of sigma 1140+SiC fibres , 1999 .

[56]  T. Yamamura,et al.  High-strength alkali-resistant sintered SiC fibre stable to 2,200 °C , 1998, Nature.

[57]  R. Pailler,et al.  Continuous SiC-based model monofilaments with a low free carbon content: Part I: From the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen , 1997 .

[58]  R. Pailler,et al.  Continuous SiC-based model monofilaments with a low free carbon content: Part II From the pyrolysis of a novel copolymer precursor , 1997 .

[59]  R. Pailler,et al.  Correlation between microstructure and mechanical behaviour at high temperatures of a SiC fibre with a low oxygen content (Hi–Nicalon) , 1997 .

[60]  H. Martin,et al.  Conversion process of chlorine containing polysilanes into silicon carbide: Part I Synthesis and crosslinking of poly(chloromethyl)silanes–carbosilanes and their transformation into inorganic amorphous silicon carbide , 1997 .

[61]  R. Pailler,et al.  A model SiC-based fibre with a low oxygen content prepared from a polycarbosilane precursor , 1997 .

[62]  F. Babonneau,et al.  Organosilicon polymers-synthesis, architecture, reactivity and applications , 1997 .

[63]  L. Lipowitz Structure and properties of SYLRAMIC^ silicon carbide fiber─a polycarbosilane, stoichiometric β-SiC composition , 1997 .

[64]  M. Monthioux,et al.  Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon) , 1997 .

[65]  E. Brendler,et al.  Methylchlorooligosilanes as products of the basecatalysed disproportionation of various methylchlorodisilanes , 1996 .

[66]  M. Monthioux,et al.  Thermal behavior of (organosilicon) polymer-derived ceramics. V: Main facts and trends , 1996 .

[67]  M. Narisawa,et al.  Synthesis of Silicon Carbide Fiber from Blended Precursor of Organosilicon Polymers , 1995 .

[68]  T. Seguchi,et al.  Reaction Mechanisms of Silicon Carbide Fiber Synthesis by Heat Treatment of Polycarbosilane Fibers Cured by Radiation: I, Evolved Gas Analysis. , 1995 .

[69]  C. Vahlas,et al.  Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation , 1994, Journal of Materials Science.

[70]  M. Monthioux,et al.  Thermal behavior of polymer-derived ceramics. IV. SiCNO fibers from an oxygen-cured polycarbosilazane , 1994 .

[71]  R. Pailler,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[72]  R. Pailler,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[73]  R. Pailler,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[74]  M. Monthioux,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[75]  R. Pailler,et al.  Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors , 1993, Journal of Materials Science.

[76]  P. Ehrburger,et al.  Reactivity and molecular structure of silicon carbide fibres derived from polycarbosilanes , 1992 .

[77]  P. Ehrburger,et al.  Reactivity and molecular structure of silicon carbide fibres derived from polycarbosilanes , 1992 .

[78]  T. Cooke Inorganic Fibers—A Literature Review , 1991 .

[79]  P. Pirouz,et al.  The microstructure of SCS-6 SiC fiber , 1991 .

[80]  J. Wallace,et al.  Effect of thermochemical treatments on the strength and microstructure of SiC fibres , 1991, Journal of Materials Science.

[81]  G. Pérez,et al.  Fiberamic R: A New Silicon Carbonitride Ceramic Fiber with High Thermal Stability , 1990 .

[82]  J. L. Miquel,et al.  Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry, X-ray diffractometry and some additional methods , 1989 .

[83]  T. Taki,et al.  A study of the oxidation curing mechanism of polycarbosilane fibre by solid-state high-resolution nuclear magnetic resonance , 1989 .

[84]  T. Yamamura,et al.  Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor , 1988 .

[85]  S. Kawanishi,et al.  A study on the electron irradiation curing mechanism of polycarbosilane fibres by solid-state29Si high-resolution nuclear magnetic resonance spectroscopy , 1988 .

[86]  K. Luthra Thermochemical Analysis of the Stability of Continuous “SiC” Fibers , 1986 .

[87]  J. Lipowitz,et al.  Ceramics From Hydridopolysilazane , 1986 .

[88]  S. Nutt,et al.  Silicon carbide filaments: Microstructure , 1985 .

[89]  G. Simon,et al.  Mechanical and structural characterization of the Nicalon silicon carbide fibre , 1984 .

[90]  H. A. Lipsitt,et al.  Thermal stability of SiC fibres (Nicalon®) , 1984 .

[91]  Y. Hasegawa,et al.  Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds , 1981 .

[92]  Y. Hasegawa,et al.  Synthesis of continuous silicon carbide fibre , 1980 .

[93]  Yoshio Hasegawa,et al.  Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus , 1978 .

[94]  Y. Hasegawa,et al.  Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor , 1978, Nature.

[95]  S. Yajima,et al.  Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus , 1978 .

[96]  Mamoru Omori,et al.  Synthesis of Continuous Sic Fibers with High Tensile Strength , 1976 .

[97]  K. Okamura,et al.  STRUCTURAL ANALYSIS IN CONTINUOUS SILICON CARBIDE FIBER OF HIGH TENSILE STRENGTH , 1975 .

[98]  M. Omori,et al.  CONTINUOUS SILICON CARBIDE FIBER OF HIGH TENSILE STRENGTH , 1975 .