Gauss quadrature

Integration is the process of measuring the area under a function plotted on a graph. Why would we want to integrate a function? Among the most common examples are finding the velocity of a body from an acceleration function, and displacement of a body from a velocity function. Throughout many engineering fields, there are (what sometimes seems like) countless applications for integral calculus. You can read about some of these applications in Chapters 07.00A-07.00G. Sometimes, the evaluation of expressions involving these integrals can become daunting, if not indeterminate. For this reason, a wide variety of numerical methods has been developed to simplify the integral. Here, we will discuss the Gauss quadrature rule of approximating integrals of the form

[1]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[2]  Harro Heuser,et al.  Lehrbuch der Analysis Teil 1 , 1990 .

[3]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[4]  Programs for computing abscissas and weights for classical and nonclassical Gaussian quadrature formulas , 1975 .

[5]  H. Heuser Lehrbuch der Analysis , 2022 .

[6]  J. Shohat,et al.  The problem of moments , 1943 .

[7]  W. Gautschi On the construction of Gaussian quadrature rules from modified moments. , 1970 .

[8]  J. Stoer Einfiihrung in die numerische mathematik i , 1972 .

[9]  J. Wheeler,et al.  Modified moments and Gaussian quadratures , 1974 .

[10]  A. Markoff Sur la méthode de Gauss pour le calcul approché des intégrales , 1885 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Walter Gautschi,et al.  Minimal Solutions of Three-Term Recurrence Relations and Orthogonal Polynomials* , 1981 .

[14]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[15]  R. Radau Étude sur les formules d'approximation qui servent à calculer la valeur numérique d'une intégrale définie. , 1880 .

[16]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[17]  R. A. Sack,et al.  An algorithm for Gaussian quadrature given modified moments , 1971 .

[18]  William H. Press,et al.  Orthogonal Polynomials and Gaussian Quadrature with Nonclassical Weight Functions , 1990 .

[19]  P. Rabinowitz Abscissas and weights for Lobatto quadrature of high order , 1960 .

[20]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[21]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[22]  W. Gautschi Orthogonal polynomials-Constructive theory and applications * , 1985 .

[23]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[24]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .