Phonon-mediated thermal transport: Confronting theory and microscopic simulation with experiment
暂无分享,去创建一个
[1] Susan B. Sinnott,et al. Effects of edge dislocations on thermal transport in UO2 , 2013 .
[2] A. Maradudin,et al. SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .
[3] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[4] T. R. Anthony,et al. Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.
[5] G. Bai,et al. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .
[6] Yoshiyuki Kawazoe,et al. First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .
[7] David J. Singh,et al. Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.
[8] Takayoshi Suzuki,et al. Effect of Dislocations on the Thermal Conductivity of LiF , 1972 .
[9] Cristina H. Amon,et al. Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .
[10] G. Youngblood,et al. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics , 1996 .
[11] Paul G. Klemens,et al. Lattice thermal conductivity of minerals at high temperatures , 1974 .
[12] Watson,et al. Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.
[13] C. Kimmer,et al. Scattering of phonons from a high-energy grain boundary in silicon : Dependence on angle of incidence , 2007 .
[14] R. Stoller,et al. Molecular dynamics study of influence of vacancy types defects on thermal conductivity of β-SiC , 2011 .
[15] Junichiro Shiomi,et al. Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .
[16] M. Gillan. Collective dynamics in superionic CaF2. I. Simulation compared with neutron-scattering experiment , 1986 .
[17] Ce-Wen Nan,et al. Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model , 1998 .
[18] Robert Vassen,et al. Recent Developments in the Field of Thermal Barrier Coatings , 2009 .
[19] P. Klemens. Thermal Conductivity and Lattice Vibrational Modes , 1958 .
[20] Amelia Carolina Sparavigna,et al. Heat transport in dielectric solids with diamond structure , 1997 .
[21] Sokrates T. Pantelides,et al. Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .
[22] S. Pettersson,et al. Calculation of the thermal conductivity of alkali halide crystals , 1987 .
[23] Phonons in Crystals using Inelastic X-Ray Scattering , 2009, 0910.5764.
[24] Simon R. Phillpot,et al. Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .
[25] Xiaoli Tang,et al. Anharmonicity-induced phonon broadening in aluminum at high temperatures , 2010 .
[26] D. Cahill,et al. Phonon-defect scattering in doped silicon by molecular dynamics simulation , 2008 .
[27] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[28] R. Peierls,et al. Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .
[30] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[31] Baroni,et al. Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory. , 1995, Physical review letters.
[32] K. Kojima,et al. Effect of Dislocations on the Low Temperature Thermal Conductivity in Germanium(Physics) , 1974 .
[33] Yiying Wu,et al. Thermal conductivity of individual silicon nanowires , 2003 .
[34] S. Ju,et al. Investigation of argon nanocrystalline thermal conductivity by molecular dynamics simulation , 2010 .
[35] Xavier Gonze,et al. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .
[36] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[37] T. R. Anthony,et al. Thermal conductivity of diamond between 170 and 1200 K and the isotope effect , 1993 .
[38] S. Sinnott,et al. Critical assessment of UO2 classical potentials for thermal conductivity calculations , 2012, Journal of Materials Science.
[39] D. Strauch,et al. Lattice-dynamical and ground-state properties ofCaF2studied by inelastic neutron scattering and density-functional methods , 2003 .
[40] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[41] F. Vook. Change in Thermal Conductivity upon Low-Temperature Electron Irradiation: GaAs , 1964 .
[42] Simon R. Phillpot,et al. Kapitza conductance and phonon scattering at grain boundaries by simulation , 2004 .
[43] James S. Tulenko,et al. Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .
[44] R. Pohl,et al. Thermal boundary resistance , 1989 .
[45] L. Stixrude,et al. Thermal conductivity of periclase (MgO) from first principles. , 2010, Physical review letters.
[46] P. Thacher. Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF , 1967 .
[47] G. Kotliar,et al. Linear response calculations of lattice dynamics in strongly correlated systems. , 2002, Physical review letters.
[48] C. N. Lau,et al. Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.
[49] M. Dresselhaus,et al. Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .
[50] Karin M. Rabe,et al. First-Principles Calculations of Complex Metal-Oxide Materials , 2010 .
[51] Pettersson. Solving the phonon Boltzmann equation with the variational method. , 1991, Physical review. B, Condensed matter.
[52] M. Malinowski,et al. Interaction between thermal phonons and dislocations in LiF , 1972 .
[53] A. Granato,et al. Effect of independent and coupled vibrations of dislocations on low-temperature thermal conductivity in alkali halides , 1982 .
[54] Alan J. H. McGaughey,et al. Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods , 2011 .
[55] D. Hurley,et al. Measurement of the Kapitza resistance across a bicrystal interface , 2011 .
[56] Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications , 2006 .
[57] J. Ziman,et al. In: Electrons and Phonons , 1961 .
[58] G. P. Srivastava,et al. The Physics of Phonons , 2019 .
[59] C. Dames,et al. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.
[60] H. Weinstock,et al. Effect of Dislocations on the Thermal Conductivity of Lithium Fluoride , 1959 .
[61] R. Peierls. On the Kinetic Theory of Thermal Conduction in Crystals , 1997 .
[62] James S. Tulenko,et al. Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .
[63] Orlando Auciello,et al. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films , 2006 .
[64] Jianjun Dong,et al. Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.
[65] Brent Fultz,et al. Vibrational thermodynamics of materials , 2010 .
[66] R. A. Verrall,et al. Thermal conductivity of hyperstoichiometric SIMFUEL , 1995 .
[67] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[68] J. Absi,et al. Grain-boundary thermal resistance in polycrystalline oxides: alumina, tin oxide, and magnesia , 2003 .
[69] S. Yip,et al. Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .
[70] Eugene E. Haller,et al. Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .
[71] D. Stone,et al. Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .
[72] David R. Clarke,et al. Materials selection guidelines for low thermal conductivity thermal barrier coatings , 2003 .
[73] J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .
[74] P. McEuen,et al. Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.
[75] M. Born,et al. Dynamical Theory of Crystal Lattices , 1954 .
[76] A. McGaughey,et al. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .
[77] Amelia Carolina Sparavigna,et al. Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.
[78] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[79] S. Phillpot,et al. Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation , 2008 .
[80] James S. Tulenko,et al. Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation , 2011 .
[81] B. K. Singh,et al. Phonon conductivity of plastically deformed crystals : Role of stacking faults and dislocations , 2006 .
[82] P. Klemens. Thermal Conduction In Solids , 1976 .
[83] S. Phillpot,et al. Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .
[84] T. Ninomiya. Dislocation Vibration and Phonon Scattering , 1968 .