Phonon-mediated thermal transport: Confronting theory and microscopic simulation with experiment

Abstract We discuss recent advances in the microscopic simulations of thermal conductivity through the prism of comparisons with experimental measurements. By dissecting the thermal conductivity into its constituent properties, heat capacity, phonon structure and anharmonic phonon properties, we show that the reliable prediction of the thermal transport properties over a range of conditions requires each to be described correctly. However, it is sometimes possible to obtain thermal conductivity values in overall good agreement with experiment through a cancellation of errors in the constituent properties. Major advances in the prediction of thermal transport properties in the last few years have come through increases in computational power and through development of numerical algorithms for the essentially exact solution of the linearized Boltzmann Transport Equation, with interatomic interactions described by first-principles electronic-structure calculations. This approach enables consistent ab initio determination of the thermal conductivity in the pure crystals. We also discuss the effects of various defects on thermal conductivity and compare results from the atomistic simulations, classical theories from the 1950s, and experimental measurements.

[1]  Susan B. Sinnott,et al.  Effects of edge dislocations on thermal transport in UO2 , 2013 .

[2]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[3]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  T. R. Anthony,et al.  Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.

[5]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[6]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[7]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[8]  Takayoshi Suzuki,et al.  Effect of Dislocations on the Thermal Conductivity of LiF , 1972 .

[9]  Cristina H. Amon,et al.  Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .

[10]  G. Youngblood,et al.  Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics , 1996 .

[11]  Paul G. Klemens,et al.  Lattice thermal conductivity of minerals at high temperatures , 1974 .

[12]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[13]  C. Kimmer,et al.  Scattering of phonons from a high-energy grain boundary in silicon : Dependence on angle of incidence , 2007 .

[14]  R. Stoller,et al.  Molecular dynamics study of influence of vacancy types defects on thermal conductivity of β-SiC , 2011 .

[15]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[16]  M. Gillan Collective dynamics in superionic CaF2. I. Simulation compared with neutron-scattering experiment , 1986 .

[17]  Ce-Wen Nan,et al.  Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model , 1998 .

[18]  Robert Vassen,et al.  Recent Developments in the Field of Thermal Barrier Coatings , 2009 .

[19]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[20]  Amelia Carolina Sparavigna,et al.  Heat transport in dielectric solids with diamond structure , 1997 .

[21]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[22]  S. Pettersson,et al.  Calculation of the thermal conductivity of alkali halide crystals , 1987 .

[23]  Phonons in Crystals using Inelastic X-Ray Scattering , 2009, 0910.5764.

[24]  Simon R. Phillpot,et al.  Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .

[25]  Xiaoli Tang,et al.  Anharmonicity-induced phonon broadening in aluminum at high temperatures , 2010 .

[26]  D. Cahill,et al.  Phonon-defect scattering in doped silicon by molecular dynamics simulation , 2008 .

[27]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[28]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  Baroni,et al.  Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory. , 1995, Physical review letters.

[32]  K. Kojima,et al.  Effect of Dislocations on the Low Temperature Thermal Conductivity in Germanium(Physics) , 1974 .

[33]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[34]  S. Ju,et al.  Investigation of argon nanocrystalline thermal conductivity by molecular dynamics simulation , 2010 .

[35]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[36]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[37]  T. R. Anthony,et al.  Thermal conductivity of diamond between 170 and 1200 K and the isotope effect , 1993 .

[38]  S. Sinnott,et al.  Critical assessment of UO2 classical potentials for thermal conductivity calculations , 2012, Journal of Materials Science.

[39]  D. Strauch,et al.  Lattice-dynamical and ground-state properties ofCaF2studied by inelastic neutron scattering and density-functional methods , 2003 .

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  F. Vook Change in Thermal Conductivity upon Low-Temperature Electron Irradiation: GaAs , 1964 .

[42]  Simon R. Phillpot,et al.  Kapitza conductance and phonon scattering at grain boundaries by simulation , 2004 .

[43]  James S. Tulenko,et al.  Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .

[44]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[45]  L. Stixrude,et al.  Thermal conductivity of periclase (MgO) from first principles. , 2010, Physical review letters.

[46]  P. Thacher Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF , 1967 .

[47]  G. Kotliar,et al.  Linear response calculations of lattice dynamics in strongly correlated systems. , 2002, Physical review letters.

[48]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[49]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[50]  Karin M. Rabe,et al.  First-Principles Calculations of Complex Metal-Oxide Materials , 2010 .

[51]  Pettersson Solving the phonon Boltzmann equation with the variational method. , 1991, Physical review. B, Condensed matter.

[52]  M. Malinowski,et al.  Interaction between thermal phonons and dislocations in LiF , 1972 .

[53]  A. Granato,et al.  Effect of independent and coupled vibrations of dislocations on low-temperature thermal conductivity in alkali halides , 1982 .

[54]  Alan J. H. McGaughey,et al.  Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods , 2011 .

[55]  D. Hurley,et al.  Measurement of the Kapitza resistance across a bicrystal interface , 2011 .

[56]  Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications , 2006 .

[57]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[58]  G. P. Srivastava,et al.  The Physics of Phonons , 2019 .

[59]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[60]  H. Weinstock,et al.  Effect of Dislocations on the Thermal Conductivity of Lithium Fluoride , 1959 .

[61]  R. Peierls On the Kinetic Theory of Thermal Conduction in Crystals , 1997 .

[62]  James S. Tulenko,et al.  Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .

[63]  Orlando Auciello,et al.  Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films , 2006 .

[64]  Jianjun Dong,et al.  Lattice thermal conductivity of MgO at conditions of Earth’s interior , 2010, Proceedings of the National Academy of Sciences.

[65]  Brent Fultz,et al.  Vibrational thermodynamics of materials , 2010 .

[66]  R. A. Verrall,et al.  Thermal conductivity of hyperstoichiometric SIMFUEL , 1995 .

[67]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[68]  J. Absi,et al.  Grain-boundary thermal resistance in polycrystalline oxides: alumina, tin oxide, and magnesia , 2003 .

[69]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[70]  Eugene E. Haller,et al.  Thermal conductivity of germanium crystals with different isotopic compositions , 1997 .

[71]  D. Stone,et al.  Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .

[72]  David R. Clarke,et al.  Materials selection guidelines for low thermal conductivity thermal barrier coatings , 2003 .

[73]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[74]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[75]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[76]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[77]  Amelia Carolina Sparavigna,et al.  Beyond the isotropic-model approximation in the theory of thermal conductivity. , 1996, Physical review. B, Condensed matter.

[78]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[79]  S. Phillpot,et al.  Thermal transport properties of MgO and Nd2Zr2O7 pyrochlore by molecular dynamics simulation , 2008 .

[80]  James S. Tulenko,et al.  Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation , 2011 .

[81]  B. K. Singh,et al.  Phonon conductivity of plastically deformed crystals : Role of stacking faults and dislocations , 2006 .

[82]  P. Klemens Thermal Conduction In Solids , 1976 .

[83]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[84]  T. Ninomiya Dislocation Vibration and Phonon Scattering , 1968 .