Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite

[1]  Zhenxin Zheng,et al.  Microstructure and Properties of Nano-Hydroxyapatite Reinforced WE43 Alloy Fabricated by Friction Stir Processing , 2019, Materials.

[2]  B. S. Pabla,et al.  Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering , 2018, Materials and Manufacturing Processes.

[3]  Sunpreet Singh,et al.  Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications , 2018, Vacuum.

[4]  Sunpreet Singh,et al.  Synthesis, Characterization, Corrosion Resistance and In-Vitro Bioactivity Behavior of Biodegradable Mg–Zn–Mn–(Si–HA) Composite for Orthopaedic Applications , 2018, Materials.

[5]  M. Kashefi,et al.  Effect of friction stir processing pass sequence on properties of Mg–ZrSiO4–Al2O3 surface hybrid micro/nano-composites , 2016 .

[6]  V. Sharma,et al.  Surface composites by friction stir processing: A review , 2015 .

[7]  I. Dinaharan,et al.  Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing , 2015 .

[8]  H. Farnoush,et al.  Fabrication and characterization of functionally graded Al–SiC nanocomposite by using a novel multistep friction stir processing , 2014 .

[9]  H. Akramifard,et al.  Effect of friction stir processing on the microstructure and mechanical properties of Cu–TiC composite , 2014 .

[10]  F. Czerwinski Controlling the ignition and flammability of magnesium for aerospace applications , 2014 .

[11]  Tianhao Wang,et al.  Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing , 2014 .

[12]  A. Kokabi,et al.  Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles , 2014 .

[13]  Yuanyuan Li,et al.  Effect of Thermal History on Microstructures and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Friction Stir Processing , 2014, Materials.

[14]  N. Huber,et al.  Increased room temperature formability of Mg AZ31 by high speed Friction Stir Processing , 2014 .

[15]  M. Doble,et al.  Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites , 2014, Journal of Materials Science: Materials in Medicine.

[16]  Basil M. Darras,et al.  Submerged friction stir processing of AZ31 Magnesium alloy , 2013 .

[17]  Alan A. Luo,et al.  Magnesium casting technology for structural applications , 2013 .

[18]  J. A. Mohandesi,et al.  Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing , 2012 .

[19]  A. Abdollah-zadeh,et al.  Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing , 2012 .

[20]  M. Gupta,et al.  TiC Nanoparticle Addition to Enhance the Mechanical Response of Hybrid Magnesium Alloy , 2012 .

[21]  Satendra Kumar,et al.  Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications , 2012, Journal of Coatings Technology and Research.

[22]  S. Kashani-Bozorg,et al.  The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer , 2011 .

[23]  Weiweng Zhang,et al.  Superplasticity of AZ31 magnesium alloy prepared by friction stir processing , 2011 .

[24]  G. Faraji,et al.  Effect of Process Parameters on Microstructure and Micro-hardness of AZ91/Al2O3 Surface Composite Produced by FSP , 2011 .

[25]  Javad Seyfi,et al.  On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior , 2011 .

[26]  Rajiv S. Mishra,et al.  Effect of Process Parameters on Abnormal Grain Growth during Friction Stir Processing of a Cast Al Alloy , 2010 .

[27]  C. Cui,et al.  Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications , 2010 .

[28]  B. Xiao,et al.  Corrosion properties of friction-stir processed cast NiAl bronze , 2010 .

[29]  H. Abdizadeh,et al.  Comparing the effect of processing temperature on microstructure and mechanical behavior of (ZrSiO4 or TiB2)/aluminum composites , 2008 .

[30]  T. Mcnelley,et al.  Recrystallization mechanisms during friction stir welding/processing of aluminum alloys , 2008 .

[31]  V. Balasubramanian,et al.  Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy , 2008 .

[32]  Z. Ma,et al.  Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing , 2007 .

[33]  Horst E. Friedrich,et al.  Current and Future Use of Magnesium in the Automobile Industry , 2003 .

[34]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[35]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .