Partial Enumeration and Curvature Regularization

Energies with high-order non-sub modular interactions have been shown to be very useful in vision due to their high modeling power. Optimization of such energies, however, is generally NP-hard. A naive approach that works for small problem instances is exhaustive search, that is, enumeration of all possible labelings of the underlying graph. We propose a general minimization approach for large graphs based on enumeration of labelings of certain small patches. This partial enumeration technique reduces complex high-order energy formulations to pair wise Constraint Satisfaction Problems with unary costs (uCSP), which can be efficiently solved using standard methods like TRW-S. Our approach outperforms a number of existing state-of-the-art algorithms on well known difficult problems (e.g. curvature regularization, stereo, deconvolution), it gives near global minimum and better speed. Our main application of interest is curvature regularization. In the context of segmentation, our partial enumeration technique allows to evaluate curvature directly on small patches using a novel integral geometry approach.

[1]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[2]  M. Droske,et al.  A level set formulation for Willmore flow , 2004 .

[3]  Fredrik Kahl,et al.  Curvature Regularization for Curves and Surfaces in a Global Optimization Framework , 2011, EMMCVPR.

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Thomas Pock,et al.  Convex Relaxation of a Class of Vertex Penalizing Functionals , 2013, Journal of Mathematical Imaging and Vision.

[6]  Amir Globerson,et al.  Convergent message passing algorithms - a unifying view , 2009, UAI.

[7]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[8]  Tomás Werner,et al.  Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted Constraint Satisfaction , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Carl Olsson,et al.  Curvature-based regularization for surface approximation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[15]  Pushmeet Kohli,et al.  Curvature Prior for MRF-Based Segmentation and Shape Inpainting , 2011, DAGM/OAGM Symposium.

[16]  Thomas Schoenemann,et al.  Generalized sequential tree-reweighted message passing , 2012, ArXiv.

[17]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[18]  Fredrik Kahl,et al.  Generalized roof duality , 2012, Discret. Appl. Math..

[19]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[20]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[21]  Richard S. Zemel,et al.  HOP-MAP: Efficient Message Passing with High Order Potentials , 2010, AISTATS.

[22]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[23]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Christian Bessiere,et al.  Non-Binary Constraints , 1999, CP.

[25]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Xue-Cheng Tai,et al.  A Continuous Max-Flow Approach to Potts Model , 2010, ECCV.

[27]  Ashish Raj,et al.  A graph cut algorithm for generalized image deconvolution , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[28]  Daniel Cremers,et al.  A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization , 2011, International Journal of Computer Vision.

[29]  Toby Walsh,et al.  Binary vs. non-binary constraints , 2002, Artif. Intell..

[30]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Carl Olsson,et al.  Simplifying Energy Optimization using Partial Enumeration , 2013, ArXiv.

[34]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[35]  E. Felten,et al.  A Crystalline Approximation Theorem for Hypersurfaces , 1990 .

[36]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.