On additive MDS codes over small fields

Let $C$ be a $(n,q^{2k},n-k+1)_{q^2}$ additive MDS code which is linear over ${\mathbb F}_q$. We prove that if $n \geqslant q+k$ and $k+1$ of the projections of $C$ are linear over ${\mathbb F}_{q^2}$ then $C$ is linear over ${\mathbb F}_{q^2}$. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over ${\mathbb F}_q$ for $q \in \{4,8,9\}$. We also classify the longest additive MDS codes over ${\mathbb F}_{16}$ which are linear over ${\mathbb F}_4$. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $q \in \{ 2,3\}$.

[1]  Jean Gordon,et al.  An Elementary Proof of the MacWilliams Theorem on Equivalence of Codes , 1978, Inf. Control..

[2]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[3]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces : update 2001 , 2001 .

[4]  Steve Linton Finding the smallest image of a set , 2004, ISSAC '04.

[5]  T. Wassmer 6 , 1900, EXILE.

[6]  Tim L. Alderson,et al.  (6,3)-MDS Codes over an Alphabet of Size 4 , 2006, Des. Codes Cryptogr..

[7]  李幼升,et al.  Ph , 1989 .

[8]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[9]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[10]  Patric R. J. Östergård,et al.  Further results on the classification of MDS codes , 2016, Adv. Math. Commun..

[11]  Aart Blokhuis,et al.  Small additive quaternary codes , 2004, Eur. J. Comb..

[13]  Patric R. J. Östergård,et al.  On the Classification of MDS Codes , 2014, IEEE Transactions on Information Theory.

[14]  Jay A. Wood,et al.  Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.

[15]  Michel Lavrauw,et al.  Field reduction and linear sets in finite geometry , 2013, 1310.8522.

[16]  Keisuke Shiromoto,et al.  Note on MDS codes over the integers modulo pm , 2000 .

[17]  Markus Grassl,et al.  Quantum Codes of Maximal Distance and Highly Entangled Subspaces , 2019, Quantum.

[18]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[19]  Martin Rötteler,et al.  Quantum MDS codes over small fields , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Simeon Ball,et al.  On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Designs, Codes and Cryptography.

[21]  A. Kerber,et al.  Error-correcting linear codes : classification by isometry and applications , 2006 .