Complexity of Prioritized Default Logics

In default reasoning, usually not all possible ways of resolving conflicts between default rules are acceptable. Criteria expressing acceptable ways of resolving the conflicts may be hardwired in the inference mechanism, for example specificity in inheritance reasoning can be handled this way, or they may be given abstractly as an ordering on the default rules. In this article we investigate formalizations of the latter approach in Reiter's default logic. Our goal is to analyze and compare the computational properties of three such formalizations in terms of their computational complexity: the prioritized default logics of Baader and Hollunder, and Brewka, and a prioritized default logic that is based on lexicographic comparison. The analysis locates the propositional variants of these logics on the second and third levels of the polynomial hierarchy, and identifies the boundary between tractable and intractable inference for restricted classes of prioritized default theories.

[1]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[2]  Francesco Buccafurri,et al.  Disjunctive Ordered Logic: Semantics and Expressiveness , 1998, KR.

[3]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[4]  Bart Selman,et al.  Hard Problems for Simple Default Logics , 1989, Artif. Intell..

[5]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[6]  Thomas Eiter,et al.  Preferred Answer Sets for Extended Logic Programs , 1999, Artif. Intell..

[7]  Torsten Schaub,et al.  Compiling Reasoning with and about Preferences into Default Logic , 1997, IJCAI.

[8]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[9]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[10]  Jussi Rintanen Prioritized Autoepistemic Logic , 1994, JELIA.

[11]  David W. Etherington Formalizing Nonmonotonic Reasoning Systems , 1987, Artif. Intell..

[12]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[13]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[14]  Henry Kautz,et al.  Hard problems for simple default theories , 1991 .

[15]  Mark Ryan,et al.  Representing Defaults as Sentences with Reduced Priority , 1992, KR.

[16]  Rina Dechter,et al.  Default Reasoning Using Classical Logic , 1996, Artif. Intell..

[17]  Gerhard Brewka,et al.  Adding Priorities and Specificity to Default Logic , 1994, JELIA.

[18]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[19]  Mark W. Krentel Generalizations of Opt P to the Polynomial Hierarchy , 1992, Theor. Comput. Sci..

[20]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[21]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[22]  Jan Treur,et al.  Constructive Default Logic and the Control of defeasible reasoning , 1992, ECAI.

[23]  Jussi Rintanen Lexicographic Priorities in Default Logic , 1998, Artif. Intell..

[24]  Ilkka Niemelä,et al.  Efficient Implementation of the Well-founded and Stable Model Semantics , 1996, JICSLP.

[25]  Hector Geffner,et al.  Conditional Entailment: Bridging two Approaches to Default Reasoning , 1992, Artif. Intell..

[26]  John F. Horty,et al.  Some direct theories of nonmonotonic inheritance , 1994 .

[27]  P. Simons Eecient Implementation of the Well- Founded and Stable Model Seman- Tics , 1996 .

[28]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.