Review of multicomponent molecular orbital method for direct treatment of nuclear quantum effect

We present the methodology and applications of multicomponent molecular orbital (MC_MO) method, which can take into account of the quantum effect of light particles, such as proton and deuteron, directly. We summarize the equations of the MC_MO method at the Hartree–Fock (HF) level and beyond the HF. The methodology of the MC_MO with fragment molecular orbital (FMO) method for large molecular systems is also described. We discuss the development of nuclear basis function based on the GTF, which is used in MC_MO and FMO-MC_MO calculations. We present the applications of MC_MO and FMO-MC_MO method for the analysis of geometrical isotope effect and kinetic isotope effect induced by H/D isotope effect. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

[1]  V. A. Savel'ev,et al.  Tentative study of strong hydrogen bond dynamics , 1990 .

[2]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[3]  M. Tachikawa,et al.  H/D isotope effect on porphine and porphycene molecules with multicomponent hybrid density functional theory. , 2006, The Journal of chemical physics.

[4]  Analysis of the nuclear-electronic orbital method for model hydrogen transfer systems. , 2005, The Journal of chemical physics.

[5]  U. Nagashima,et al.  Quantum treatment of hydrogen nuclei in primary kinetic isotope effects in a thermal [1,5]-sigmatropic hydrogen (or deuterium) shift from (Z)-1,3-pentadiene. , 2007, The journal of physical chemistry. A.

[6]  X. H. Chen,et al.  Molecular caps for full quantum mechanical computation of peptide–water interaction energy , 2003, J. Comput. Chem..

[7]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[8]  M. Tachikawa,et al.  Geometry relaxation effects for molecules as a result of binding with a positron. , 2004, The Journal of chemical physics.

[9]  L. Adamowicz,et al.  High accuracy non-Born–Oppenheimer calculations for the isotopomers of the hydrogen molecule with explicitly correlated Gaussian functions , 2000 .

[10]  M. Tachikawa Simultaneous optimization of Gaussian type function exponents for electron and positron with full-CI wavefunction – application to ground and excited states of positronic compounds with multi-component molecular orbital approach , 2001 .

[11]  U. Nagashima,et al.  A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing HD isotope effects in large molecules. , 2006, The Journal of chemical physics.

[12]  U. Nagashima,et al.  HD isotope effect of methyl internal rotation for acetaldehyde in ground state as calculated from a multicomponent molecular orbital method. , 2008, The Journal of chemical physics.

[13]  V. Guallar,et al.  Hydrogen bonding pathways in human dihydroorotate dehydrogenase. , 2006, The journal of physical chemistry. B.

[14]  Analysis of nuclear quantum effects on hydrogen bonding. , 2007, The journal of physical chemistry. A.

[15]  Masato Kobayashi,et al.  Is the divide-and-conquer Hartree–Fock method valid for calculations of delocalized systems? , 2007 .

[16]  U. Nagashima,et al.  Deuterium-substituted water–ammonia mixed trimer clusters, (H2O)n−3(NH3)n (n = 0,1,2,3): Interaction energy, hydrogen bond structures, and Mulliken population , 2008 .

[17]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[18]  U. Nagashima,et al.  Isotope effect in hydrogen/deuterium-absorbing Pd nanoparticles revealed by X-ray powder diffraction and by a multi-component MO method , 2004 .

[19]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[20]  L. Adamowicz,et al.  Newton–Raphson optimization of the many‐body nonadiabatic wave function expressed in terms of explicitly correlated Gaussian functions , 1992 .

[21]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[22]  S. P. Webb,et al.  Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations , 2002 .

[23]  Masato Kobayashi,et al.  Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. , 2007, The Journal of chemical physics.

[24]  Masato Kobayashi,et al.  Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. , 2006, The Journal of chemical physics.

[25]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[26]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[27]  U. Nagashima,et al.  Analysis of exponent values in Gaussian‐type functions for development of protonic and deuteronic basis functions , 2006 .

[28]  N. Geacintov,et al.  Proton-coupled electron-transfer reactions at a distance in DNA duplexes: Kinetic deuterium isotope effect , 2001 .

[29]  L. Adamowicz,et al.  Non-Born-Oppenheimer isotope effects on the polarizabilities of H2. , 2002, Physical review letters.

[30]  X. Chen,et al.  Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. , 2004, The Journal of chemical physics.

[31]  Jaroslaw Meller,et al.  Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase. , 2003, Journal of the American Chemical Society.

[32]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations of the polarizability of LiH in a basis of explicitly correlated Gaussian functions , 2002 .

[33]  M. Molski,et al.  Orbit-orbit relativistic corrections to the pure vibrational non-Born-Oppenheimer energies of H(2). , 2008, The Journal of chemical physics.

[34]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[35]  M. Tachikawa The first-principles multi-component molecular orbital approach to bound states of positron with the 2-deoxyglucose molecule as a reagent of positron emission tomography , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  U. Nagashima,et al.  Isotope effect on hydrogen (deuterium)-absorbing Pt clusters calculated by the multi-component molecular orbital method , 2005 .

[37]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[38]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[39]  Y. Shigeta,et al.  A formulation and numerical approach to molecular systems by the Green function method without the Born–Oppenheimer approximation , 1999 .

[40]  L. Adamowicz,et al.  Non-Born-Oppenheimer variational calculation of the ground-state vibrational spectrum of LiH+. , 2006, The Journal of chemical physics.

[41]  Xiao He,et al.  Quantum computational analysis for drug resistance of HIV‐1 reverse transcriptase to nevirapine through point mutations , 2005, Proteins.

[42]  U. Nagashima,et al.  Geometrical and Kinetic Isotope Effects on R-H(D)···R Type Intramolecular Hydrogen Bonds (R = CH2, NH, and O) Using a Multi-Component Molecular Orbital Method , 2008 .

[43]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations of atoms and molecules , 2003 .

[44]  B. A. Pettitt Hartree-Fock theory of proton states in hydrides , 1986 .

[45]  Kazuo Kitaura,et al.  Time-dependent density functional theory based upon the fragment molecular orbital method. , 2007, The Journal of chemical physics.

[46]  H. W. Joy,et al.  Protonic Structure of Molecules. II. Methodology, Center-of-Mass Transformation, and the Structure of Methane, Ammonia, and Water , 1970 .

[47]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[48]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[49]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[50]  Shigenori Tanaka,et al.  Modern methods for theoretical physical chemistry of biopolymers , 2006 .

[51]  Development of analytic energy gradient method in nuclear orbital plus molecular orbital theory , 2007 .

[52]  L. Adamowicz,et al.  Lifetime of Positronium Molecule. Study with Boys' Explicitly Correlated Gaussians , 1996 .

[53]  Jacopo Tomasi,et al.  The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution , 2001 .

[54]  Y. Shigeta,et al.  Density functional theory without the Born–Oppenheimer approximation and its application , 1998 .

[55]  K. Kitaura,et al.  Definition of molecular orbitals in fragment molecular orbital method , 2002 .

[56]  Thom Vreven,et al.  Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. , 2006, Journal of chemical theory and computation.

[57]  John Z. H. Zhang,et al.  Fully quantum mechanical energy optimization for protein–ligand structure , 2004, J. Comput. Chem..

[58]  T. Hirano,et al.  Study of the quasicanonical localized orbital method based on protein structures. , 2007, The Journal of chemical physics.

[59]  D. M. Bishop Non-adiabatic calculations for H2 +, HD+ and D2 + , 1974 .

[60]  H. Nakai,et al.  Hybrid treatment combining the translation- and rotation-free nuclear orbital plus molecular orbital theory with generator coordinate method: TRF-NOMO/GCM , 2007 .

[61]  A. Ubbelohde,et al.  Acid-base effects in hydrogen bonds in crystals , 1955 .

[62]  Y. Ozaki,et al.  NONADIABATIC MOLECULAR THEORY AND ITS APPLICATION. II. WATER MOLECULE , 1998 .

[63]  M. Tachikawa Isotope effect and cluster size dependence for water and hydrated hydrogen halide clusters: multi-component molecular orbital approach , 2002 .

[64]  L. Adamowicz,et al.  Non-Born-Oppenheimer variational calculations of HT+ bound states with zero angular momentum. , 2005, The Journal of chemical physics.

[65]  L. Adamowicz,et al.  Non-Born-Oppenheimer molecular structure and one-particle densities for H2D+. , 2005, The Journal of chemical physics.

[66]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[67]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[68]  Yun Xiang,et al.  Quantum study of mutational effect in binding of efavirenz to HIV‐1 RT , 2005, Proteins.

[69]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[70]  Hiromi Nakai,et al.  Colle‐Salvetti‐type correction for electron–nucleus correlation in the nuclear orbital plus molecular orbital theory , 2008, J. Comput. Chem..

[71]  L. Adamowicz,et al.  Relativistic corrections to the non-Born-Oppenheimer energies of the lowest singlet Rydberg states of 3He and 4He. , 2007, The Journal of chemical physics.

[72]  Masato Kobayashi,et al.  Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. , 2008, The Journal of chemical physics.

[73]  Ye Mei,et al.  New method for direct linear-scaling calculation of electron density of proteins. , 2005, The journal of physical chemistry. A.

[74]  A. Chakraborty,et al.  Explicit dynamical electron-proton correlation in the nuclear-electronic orbital framework. , 2006, The journal of physical chemistry. A.

[75]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[76]  Kaori Fukuzawa,et al.  Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. , 2006, The journal of physical chemistry. B.

[77]  A. Chakraborty,et al.  Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach. , 2007, The journal of physical chemistry. A.

[78]  John Z H Zhang,et al.  Quantum mechanical map for protein-ligand binding with application to beta-trypsin/benzamidine complex. , 2004, The Journal of chemical physics.

[79]  M. Molski,et al.  An accurate non-Born-Oppenheimer calculation of the first purely vibrational transition in LiH molecule. , 2005, The Journal of chemical physics.

[80]  D. Truhlar,et al.  Dependence of transition state structure on substrate: the intrinsic C-13 kinetic isotope effect is different for physiological and slow substrates of the ornithine decarboxylase reaction because of different hydrogen bonding structures. , 2005, Journal of the American Chemical Society.

[81]  Sergio A. González,et al.  Theoretical investigation of isotope effects: The any‐particle molecular orbital code , 2008 .

[82]  Thom Vreven,et al.  Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints , 2003, J. Comput. Chem..

[83]  Malika Kumarasiri,et al.  Anharmonic effects in ammonium nitrate and hydroxylammonium nitrate clusters. , 2007, Journal of Physical Chemistry B.

[84]  N. Dalal,et al.  COEXISTENCE OF ORDER-DISORDER AND DISPLACIVE FEATURES AT THE PHASE TRANSITIONS IN HYDROGEN-BONDED SOLIDS : SQUARIC ACID AND ITS ANALOGS , 1998 .

[85]  Monkhorst Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method. , 1987, Physical review. A, General physics.

[86]  S. Hammes-Schiffer,et al.  Development of electron-proton density functionals for multicomponent density functional theory. , 2008, Physical review letters.

[87]  A. LiWang,et al.  N1...N3 hydrogen bonds of A:U base pairs of RNA are stronger than those of A:T base pairs of DNA. , 2004, Journal of the American Chemical Society.

[88]  L. Adamowicz,et al.  Nonrelativistic molecular quantum mechanics without approximations: electron affinities of LiH and LiD. , 2004, The Journal of chemical physics.

[89]  S. Hammes‐Schiffer,et al.  Impact of nuclear quantum effects on the molecular structure of bihalides and the hydrogen fluoride dimer. , 2005, The journal of physical chemistry. A.

[90]  H. Nakai Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO+MO/HF theory , 2002 .

[91]  L. Adamowicz,et al.  Matrix elements for Ĵ2 and Ĵz operators over explicitly correlated Cartesian Gaussian functions , 1995 .

[92]  S. Hyodo,et al.  Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. , 2005, The Journal of chemical physics.

[93]  John Z H Zhang,et al.  Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy. , 2004, The Journal of chemical physics.

[94]  U. Nagashima,et al.  The geometrical isotope effect of C-H...O type hydrogen bonds revealed by multi-component molecular orbital calculation , 2004 .

[95]  M. Molski,et al.  Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+. , 2005, The Journal of chemical physics.

[96]  U. Nagashima,et al.  Electron-electron and electron-nucleus correlation effects on exponent values of Gaussian-type functions for quantum protons and deuterons. , 2006, The Journal of chemical physics.

[97]  D. Truhlar,et al.  Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase. , 2005, The journal of physical chemistry. B.

[98]  Y. Osamura,et al.  ISOTOPE EFFECT OF HYDRATED CLUSTERS OF HYDROGEN CHLORIDE, HCL(H2O)N AND DCL(H2O)N (N = 0-4) : APPLICATION OF DYNAMIC EXTENDED MOLECULAR ORBITAL METHOD , 1999 .

[99]  L. Adamowicz,et al.  Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections. , 2007, The Journal of chemical physics.

[100]  Ye Mei,et al.  A new quantum method for electrostatic solvation energy of protein. , 2006, The Journal of chemical physics.

[101]  M. Tachikawa Multi-component molecular orbital theory for electrons and nuclei including many-body effect with full configuration interaction treatment: isotope effects on hydrogen molecules , 2002 .

[102]  U. Nagashima,et al.  Analysis of isotope effect of hydrogen-absorbing Pd ultra-fine particle by X-ray powder diffraction and first principle multi-component MO calculation , 2003 .

[103]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations on the LiH molecule with explicitly correlated Gaussian functions , 2001 .

[104]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[105]  R. Strey,et al.  Homogeneous Nucleation of H2O and D2O in Comparison: The Isotope Effect† , 2001 .

[106]  U. Nagashima,et al.  Analytical optimization of exponent values in protonic and deuteronic Gaussian-type functions by elimination of translational and rotational motions from multi-component molecular orbital scheme , 2008 .

[107]  M. Molski,et al.  Lowest vibrational states of He4 He+3: Non-Born-Oppenheimer calculations , 2007 .

[108]  L. Adamowicz,et al.  Darwin and mass-velocity relativistic corrections in the non-Born-Oppenheimer calculations of pure vibrational states of H2. , 2006, The Journal of chemical physics.

[109]  A. Chakraborty,et al.  Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions. , 2008, The Journal of chemical physics.

[110]  M. V. Pak,et al.  Application of the nuclear–electronic orbital method to hydrogen transfer systems: multiple centers and multiconfigurational wavefunctions , 2004 .

[111]  U. Nagashima,et al.  H/D isotope effect in methyl torsional interaction of acetone as calculated by a multicomponent molecular orbital method. , 2008, The Journal of chemical physics.

[112]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[113]  Naoki Tsunekawa,et al.  Density functional calculation of the electronic structure on insulin hexamer , 2007 .

[114]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[115]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[116]  L. Adamowicz,et al.  Implementation of analytical first derivatives for evaluation of the many‐body nonadiabatic wave function with explicitly correlated Gaussian functions , 1992 .

[117]  Isotope effect in dihydrogen-bonded systems: application of the analytical energy gradient method in the nuclear orbital plus molecular orbital theory , 2007 .

[118]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[119]  H. Nakai,et al.  Non-Born Oppenheimer effects predicted by translation-free nuclear orbital plus molecular orbital method , 2006 .

[120]  Fumitoshi Sato,et al.  Convergence process with quasi-canonical localized orbital in all-electron SCF calculation on proteins , 2003 .

[121]  I. Thomas "Vibrational" and "Rotational" Energy Levels as Protonic Structure in Molecules , 1971 .

[122]  K. Morokuma,et al.  Investigation of the S0S1 excitation in bacteriorhodopsin with the ONIOM(MO:MM) hybrid method , 2003 .

[123]  T. Iordanov,et al.  Vibrational analysis for the nuclear–electronic orbital method , 2003 .

[124]  M. Tachikawa,et al.  Full variational molecular orbital method: Application to the positron-molecule complexes , 1998 .

[125]  L. Adamowicz,et al.  Nonadiabatic Calculations of the Dipole Moments of LiH and LiD. , 2002, Physical review letters.

[126]  Fumitoshi Sato,et al.  Calculation of all-electron wavefunction of hemoprotein cytochrome c by density functional theory , 2001 .

[127]  H. Nakai,et al.  Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO/MBPT and CC methods , 2003 .

[128]  T. James,et al.  Detecting ligand binding to a small RNA target via saturation transfer difference NMR experiments in D(2)O and H(2)O. , 2002, Journal of the American Chemical Society.

[129]  H. Tokiwa,et al.  First principles calculation for hydrogen/positronium adsorption on an Si(111) surface using the dynamical extended molecular orbital method , 1999 .

[130]  H. Nakai,et al.  An extension of ab initio molecular orbital theory to nuclear motion , 1998 .

[131]  Brian W. Hopkins,et al.  A multicentered approach to integrated QM/QM calculations. Applications to multiply hydrogen bonded systems , 2003, J. Comput. Chem..

[132]  U. Nagashima,et al.  Simultaneous analytical optimization of variational parameters in Gaussian-type functions with full configuration interaction of multicomponent molecular orbital method by elimination of translational and rotational motions: application to isotopomers of the hydrogen molecule. , 2008, The Journal of chemical physics.

[133]  L. Adamowicz,et al.  Improved Nonadiabatic Ground-State Energy Upper Bound for Dihydrogen , 1999 .

[134]  L. Adamowicz,et al.  Effctive nonadiabatic calculations on the ground state of the HD+ molecule , 1995 .

[135]  G. Voth,et al.  Hybrid Ab-Initio/Empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-Centered Density Matrix Propagation (ADMP) Approach , 2004 .

[136]  L. Adamowicz,et al.  Darwin and mass-velocity relativistic corrections in non-Born-Oppenheimer variational calculations. , 2006, The Journal of chemical physics.

[137]  O. Kühn,et al.  The geometric (H/D) isotope effect in porphycene: grid-based Born-Oppenheimer vibrational wavefunctions vs. multi-component molecular orbital theory. , 2005, Physical chemistry chemical physics : PCCP.

[138]  T. Creamer,et al.  Effects of H2O and D2O on polyproline II helical structure. , 2004, Journal of the American Chemical Society.

[139]  M. Tachikawa,et al.  Bound states of positron with urea and acetone molecules using configuration interaction ab initio molecular orbital approach , 2003 .

[140]  Jan H. Jensen,et al.  Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. , 2008, The journal of physical chemistry. A.

[141]  Y. Osamura,et al.  Isotope effect of hydrogen and lithium hydride molecules. Application of the dynamic extended molecular orbital method and energy component analysis , 2000 .

[142]  L. Adamowicz,et al.  An effective method for generating nonadiabatic many-body wave function using explicitly correlated Gaussian-type functions , 1991 .

[143]  Hiroshi Kashiwagi,et al.  All‐electron density functional calculation on insulin with quasi‐canonical localized orbitals , 2005, J. Comput. Chem..

[144]  I. Thomas Protonic Structure of Molecules. I. Ammonia Molecules , 1969 .

[145]  L. Adamowicz,et al.  Variational calculations of excited states with zero total angular momentum (vibrational spectrum) of H2 without use of the Born–Oppenheimer approximation , 2003 .

[146]  K. Morokuma,et al.  On the application of the IMOMO (integrated molecular orbital + molecular orbital) method , 2000 .

[147]  U. Nagashima,et al.  Kinetic and geometrical isotope effects in hydrogen-atom transfer reaction, as calculated by the multi-component molecular orbital method , 2005 .

[148]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[149]  L. Adamowicz,et al.  Calculations of the ground states of BeH and BeH+ without the Born-Oppenheimer approximation. , 2007, The Journal of chemical physics.

[150]  M. Tachikawa Multi-component molecular orbital study of isotope effects on lithium hydride molecules with the configuration interaction scheme , 2003 .

[151]  Yutaka Akiyama,et al.  Fragment molecular orbital method: application to polypeptides , 2000 .

[152]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[153]  M. V. Pak,et al.  Nuclear-electronic orbital nonorthogonal configuration interaction approach. , 2005, The Journal of chemical physics.

[154]  Hiroaki Tokiwa,et al.  Geometric isotope effect of various intermolecular and intramolecular C-H...O hydrogen bonds, using the multicomponent molecular orbital method. , 2006, The journal of physical chemistry. A.

[155]  D. M. Bishop,et al.  Calculation of transition frequencies for H 2 + and its isotopes to spectroscopic accuracy , 1977 .

[156]  M. V. Pak,et al.  Investigation of isotope effects with the nuclear-electronic orbital approach. , 2005, The Journal of chemical physics.

[157]  H. Nakai,et al.  Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory: application of Moller-Plesset perturbation theory. , 2006, The Journal of chemical physics.