Fractional Diffusion Limit for a Fractional Vlasov-Fokker-Planck Equation

This paper is devoted to the rigorous derivation of the macroscopic limit of a Vlasov-Fokker-Planck equation in which the Laplacian is replaced by a fractional Laplacian. The evolution of the density is governed by a fractional heat equation with the addition of a convective term coming from the external force. The analysis is performed by a modified test function method and by obtaining a priori estimates from quadratic entropy bounds. In addition, we give the proof of existence and uniqueness of solutions to the Vlasov-fractional-Fokker-Planck equation.

[1]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[2]  Antoine Mellet,et al.  Anomalous transport of particles in plasma physics , 2012, Appl. Math. Lett..

[3]  M. Bostan,et al.  Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case , 2008 .

[4]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[5]  Jinqiao Duan,et al.  Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.

[6]  Cyril Imbert,et al.  The Lévy-Fokker-Planck equation: Φ-entropies and convergence to equilibrium , 2008, Asymptot. Anal..

[7]  J. V'azquez Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators , 2014, 1401.3640.

[8]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[9]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[10]  Juan Soler,et al.  Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. , 2005 .

[11]  François Bouchut,et al.  On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials , 1995, Differential and Integral Equations.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  J. Carrillo Global weak solutions for the initial–boundary-value problems Vlasov–Poisson–Fokker–Planck System , 1998 .

[14]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[15]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[16]  Christian Schmeiser,et al.  Fractional-Diffusion-Advection Limit of a Kinetic Model , 2015, SIAM J. Math. Anal..

[17]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[18]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[19]  A. Majda DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM , 2009 .

[20]  Generalized Fokker-Planck equations and convergence to their equilibria , 2003 .

[21]  T. Jakubowski,et al.  Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators , 2007 .

[22]  B. Jourdain,et al.  Convergence of a stochastic particle approximation for fractional scalar conservation laws , 2010, 1006.4047.

[23]  L. Silvestre Holder estimates for advection fractional-diffusion equations , 2010, 1009.5723.

[24]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .