Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands

[1]  P. Jowsey AN IMPROVED PEAT SAMPLER , 1966 .

[2]  Rudiyanto,et al.  Further results on comparison of methods for quantifying soil carbon in tropical peats , 2016 .

[3]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[4]  Alfred E. Hartemink,et al.  Total soil organic carbon and carbon sequestration potential in Nigeria , 2016 .

[5]  J. Gallant,et al.  A multiresolution index of valley bottom flatness for mapping depositional areas , 2003 .

[6]  M. Mahdianpari,et al.  Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery , 2017 .

[7]  Rudiyanto,et al.  Estimating distribution of carbon stock in tropical peatland using a combination of an Empirical Peat Depth Model and GIS , 2015 .

[8]  C. Akumu,et al.  Modeling peatland carbon stock in a delineated portion of the Nayshkootayaow river watershed in Far North, Ontario using an integrated GIS and remote sensing approach , 2014 .

[9]  S. Limin,et al.  A cost-efficient method to assess carbon stocks in tropical peat soil , 2012 .

[10]  D. Vitt,et al.  Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation , 2003 .

[11]  Peter Finke,et al.  Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran , 2017 .

[12]  Max Kuhn,et al.  caret: Classification and Regression Training , 2015 .

[13]  Kementerian Pertanian,et al.  Peta Lahan Gambut Indonesia Skala 1:250.000 , 2018 .

[14]  Supardi,et al.  General geology and peat resources of the Siak Kanan and Bengkalis Island peat deposits, Sumatra, Indonesia , 1993 .

[15]  Andreas Ziegler,et al.  ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.

[16]  Variasi kadar karbon organik berdasarkan perbedaan kedalaman muka air pada lahan gambut yang diusahakan untuk komoditas perkebunan. , 2012 .

[17]  André Beaudoin,et al.  Digital mapping of soil properties in Canadian managed forests at 250m of resolution using the k-nearest neighbor method , 2014 .

[18]  Ron Wehrens,et al.  The pls Package: Principal Component and Partial Least Squares Regression in R , 2007 .

[19]  Malcolm Coull,et al.  Mapping soil carbon stocks across Scotland using a neural network model , 2016 .

[20]  Matthew Warren,et al.  An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion , 2017, Carbon Balance and Management.

[21]  D. Charman,et al.  A method for modelling peat depth in blanket peatlands , 2012 .

[22]  Laura Poggio,et al.  Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas. , 2017, The Science of the total environment.

[23]  J. Esterle,et al.  Spatial variability in modern tropical peat deposits from Sarawak, Malaysia and Sumatra, Indonesia: analogues for coal , 1994 .

[24]  Budi Setiawan,et al.  Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands , 2016 .

[25]  R. M. Lark,et al.  Airborne radiometric survey data and a DTM as covariates for regional scale mapping of soil organic carbon across Northern Ireland , 2009 .

[26]  Limin Peng,et al.  Quantile Regression for Left‐Truncated Semicompeting Risks Data , 2011, Biometrics.

[27]  B. Ripley,et al.  Recursive Partitioning and Regression Trees , 2015 .

[28]  Alfred E. Hartemink,et al.  Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark , 2014, PloS one.

[29]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[30]  Samuel Corgne,et al.  Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images , 2016, Remote. Sens..

[31]  Philippe Lagacherie,et al.  Using quantile regression forest to estimate uncertainty of digital soil mapping products , 2017 .

[32]  Supardi,et al.  Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal , 1993 .

[33]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[34]  Mathias Disney,et al.  Carbon storage in peatlands: A case study on the Isle of Man , 2013 .

[35]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[36]  Jo U. Smith,et al.  How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application , 2016 .

[37]  M. Larocque,et al.  Determining the number of manual measurements required to improve peat thickness estimations by ground penetrating radar , 2009 .

[38]  L. Slater,et al.  Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization , 2015 .

[39]  J. Holden,et al.  Evaluating approaches for estimating peat depth , 2014 .

[40]  Zhong Lu,et al.  Characterizing hydrologic changes of the Great Dismal Swamp using SAR/InSAR , 2017 .

[41]  Achim Zeileis,et al.  evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R , 2014 .

[42]  Christopher J. Banks,et al.  Global and regional importance of the tropical peatland carbon pool , 2011 .

[43]  Mike Grundy,et al.  Soil and landscape grid of Australia. , 2015 .

[44]  N. Holden,et al.  Estimating the carbon stock of a blanket peat region using a peat depth inference model , 2011 .

[45]  C. Ballabio,et al.  Mapping topsoil physical properties at European scale using the LUCAS database , 2016 .

[46]  Z. Libohova,et al.  Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale , 2012 .

[47]  Frédérique Seyler,et al.  Mapping soil organic carbon on a national scale: Towards an improved and updated map of Madagascar , 2017 .

[48]  M. Aitkenhead Mapping peat in Scotland with remote sensing and site characteristics , 2017 .

[49]  Edward T. A. Mitchard,et al.  The distribution and amount of carbon in the largest peatland complex in Amazonia , 2014 .

[50]  Y. Bergeron,et al.  Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada , 2011 .

[51]  Budiman Minasny,et al.  Digital soil mapping: A brief history and some lessons , 2016 .

[52]  Budiman Minasny,et al.  Digital mapping of soil carbon , 2013 .

[53]  Budiman Minasny,et al.  Chile and the Chilean soil grid: A contribution to GlobalSoilMap , 2017 .

[54]  F. O'Loughlin,et al.  A multi-sensor approach towards a global vegetation corrected SRTM DEM product , 2016 .

[55]  Bradley A. Miller,et al.  Spatial Modeling of Organic Carbon in Degraded Peatland Soils of Northeast Germany , 2015 .

[56]  Gerard B. M. Heuvelink,et al.  Do more detailed environmental covariates deliver more accurate soil maps , 2015 .

[57]  J. Seibert,et al.  On the calculation of the topographic wetness index: evaluation of different methods based on field observations , 2005 .

[58]  Gerard B. M. Heuvelink,et al.  Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach , 2009 .

[59]  T. Hengl,et al.  3D soil hydraulic database of Europe at 250 m resolution , 2017 .

[60]  R. Fyfe,et al.  The importance of sub‐peat carbon storage as shown by data from Dartmoor, UK , 2014 .

[61]  Paul L. G. Vlek,et al.  An appraisal of global wetland area and its organic carbon stock , 2005 .

[62]  Budiman Minasny,et al.  On digital soil mapping , 2003 .

[63]  Achim Zeileis,et al.  Partykit: a modular toolkit for recursive partytioning in R , 2015, J. Mach. Learn. Res..

[64]  André St-Hilaire,et al.  A review of ground-penetrating radar studies related to peatland stratigraphy with a case study on the determination of peat thickness in a northern boreal fen in Quebec, Canada , 2013 .

[65]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[66]  Florian Siegert,et al.  Determination of the amount of carbon stored in Indonesian peatlands. , 2008 .

[67]  Knut Conradsen,et al.  Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series , 2016, Remote. Sens..

[68]  H. Vereecken,et al.  Mapping peat layer properties with multi-coil offset electromagnetic induction and laser scanning elevation data , 2016 .

[69]  Witold R. Rudnicki,et al.  Feature Selection with the Boruta Package , 2010 .

[70]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[71]  Dominique Arrouays,et al.  National versus global modelling the 3D distribution of soil organic carbon in mainland France , 2016 .

[72]  J. Anderson Ecology and forest types of the peat swamp forests of Sarawak and Brunei in relation to their silviculture , 1961 .

[73]  J. McKinley,et al.  Spatial statistics to estimate peat thickness using airborne radiometric data , 2013 .