Weight-Adjusted Discontinuous Galerkin Methods: Curvilinear Meshes

Traditional time-domain discontinuous Galerkin (DG) methods result in large storage costs at high orders of approximation due to the storage of dense elemental matrices. In this work, we propose a weight-adjusted DG (WADG) methods for curvilinear meshes which reduce storage costs while retaining energy stability. A priori error estimates show that high order accuracy is preserved under sufficient conditions on the mesh, which are illustrated through convergence tests with different sequences of meshes. Numerical and computational experiments verify the accuracy and performance of WADG for a model problem on curved domains.

[1]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[2]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[3]  Marc Duruflé,et al.  Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..

[4]  Axel Modave,et al.  A nodal discontinuous Galerkin method for reverse-time migration on GPU clusters , 2015, 1506.00907.

[5]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[6]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[7]  W. A. Mulder,et al.  Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .

[8]  Axel Modave,et al.  GPU-accelerated discontinuous Galerkin methods on hybrid meshes , 2015, J. Comput. Phys..

[9]  T. Warburton,et al.  A low storage curvilinear discontinuous Galerkin time-domain method for electromagnetics , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[10]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[11]  Antony Jameson,et al.  Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements , 2014, J. Comput. Appl. Math..

[12]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[13]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[14]  Markus Clemens,et al.  Scalability of Higher-Order Discontinuous Galerkin FEM Computations for Solving Electromagnetic Wave Propagation Problems on GPU Clusters , 2010, IEEE Transactions on Magnetics.

[15]  Craig Michoski,et al.  Foundations of the blended isogeometric discontinuous Galerkin (BIDG) method , 2016 .

[16]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[17]  Jean-François Remacle,et al.  Optimizing the geometrical accuracy of curvilinear meshes , 2015, J. Comput. Phys..

[18]  Timothy C. Warburton,et al.  Weight-Adjusted Discontinuous Galerkin Methods: Wave Propagation in Heterogeneous Media , 2016, SIAM J. Sci. Comput..

[19]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[20]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[21]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[22]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[23]  Jesse Chan,et al.  GPU-Accelerated Bernstein-Bézier Discontinuous Galerkin Methods for Wave Problems , 2015, SIAM J. Sci. Comput..

[24]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..

[25]  Jason F. Shepherd,et al.  Hexahedral mesh generation constraints , 2008, Engineering with Computers.

[26]  Freddie D. Witherden,et al.  On the development and implementation of high-order flux reconstruction schemes for computational fluid dynamics , 2015 .

[27]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[28]  J. Remacle,et al.  Efficient visualization of high‐order finite elements , 2007 .

[29]  Freddie D. Witherden,et al.  On the identification of symmetric quadrature rules for finite element methods , 2014, Comput. Math. Appl..

[30]  Antony Jameson,et al.  Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations , 2011 .

[31]  Siva Nadarajah,et al.  Equivalence between the Energy Stable Flux Reconstruction and Filtered Discontinuous Galerkin Schemes , 2016, J. Comput. Phys..

[32]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[33]  Axel Modave,et al.  GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models , 2016, Comput. Geosci..

[34]  Timothy C. Warburton,et al.  A Low-Storage Curvilinear Discontinuous Galerkin Method for Wave Problems , 2013, SIAM J. Sci. Comput..

[35]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[36]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[37]  Marc Duruflé,et al.  Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases , 2013 .

[38]  Lorenzo Botti,et al.  Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces , 2012, J. Sci. Comput..

[39]  Lilia Krivodonova,et al.  High-order accurate implementation of solid wall boundary conditions in curved geometries , 2006 .

[40]  Xiangxiong Zhang,et al.  A simple and accurate discontinuous Galerkin scheme for modeling scalar-wave propagation in media with curved interfaces , 2014 .

[41]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[42]  Xiangxiong Zhang,et al.  A curved boundary treatment for discontinuous Galerkin schemes solving time dependent problems , 2016, J. Comput. Phys..

[43]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[44]  Jesse Chan,et al.  Orthogonal Bases for Vertex-Mapped Pyramids , 2016, SIAM J. Sci. Comput..

[45]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[46]  Xin Wang,et al.  Discontinuous Galerkin time domain methods for acoustics and comparison with finite difference time domain methods , 2010 .