On the Expansion Length Of Triple-Base Number Systems

Triple-base number systems are mainly used in elliptic curve cryptography to speed up scalar multiplication. We give an upper bound on the length of the canonical triple-base representation with base {2, 3, 5} of an integer x, which is \(\mathcal{O}(\frac{\log x}{\log\log x})\) by the greedy algorithm, and show that there are infinitely many integers x whose shortest triple-base representations with base {2, 3, 5} have length greater than \(\frac{c\log x}{\log\log x\log\log\log x},\) where c is a positive constant, using the universal exponent method. This analysis gives a limit how much scalar multiplication on elliptic curves may be made faster.

[1]  R. Tijdeman,et al.  On the maximal distance between integers composed of small primes , 1974 .

[2]  Vivek Kapoor,et al.  Elliptic curve cryptography , 2008, UBIQ.

[3]  Graham A. Jullien,et al.  An Algorithm for Modular Exponentiation , 1998, Inf. Process. Lett..

[4]  Information Security and Privacy , 1996, Lecture Notes in Computer Science.

[5]  Vassil S. Dimitrov,et al.  Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation , 2007, ISC.

[6]  Moti Yung,et al.  A New Randomness Extraction Paradigm for Hybrid Encryption , 2009, EUROCRYPT.

[7]  Christophe Doche,et al.  Double-Base Number System for Multi-Scalar Multiplications , 2009, IACR Cryptol. ePrint Arch..

[8]  Laurent Imbert,et al.  Efficient and Secure Elliptic Curve Point Multiplication Using Double-Base Chains , 2005, ASIACRYPT.

[9]  Vassil S. Dimitrov,et al.  Lower bounds on the lengths of double-base representations , 2010, 1001.4133.

[10]  Hiroshi Imai,et al.  Fast Elliptic Curve Cryptography Using Optimal Double-Base Chains , 2011, IACR Cryptol. ePrint Arch..

[11]  Christophe Clavier,et al.  Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings , 2009, CHES.

[12]  Tanja Lange,et al.  Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology in India, Kolkata, India, December 11-13, 2006, Proceedings , 2006, INDOCRYPT.

[13]  Graham A. Jullien,et al.  Theory and applications for a double-base number system , 1997, Proceedings 13th IEEE Sympsoium on Computer Arithmetic.

[14]  Laurent Imbert,et al.  Extended Double-Base Number System with Applications to Elliptic Curve Cryptography , 2006, INDOCRYPT.

[15]  B. D. Weger,et al.  Algorithms for diophantine equations , 1989 .

[16]  V.S. Dimitrov,et al.  Loading the bases: a new number representation with applications , 2003, IEEE Circuits and Systems Magazine.

[17]  R. Carmichael On Composite Numbers P Which Satisfy the Fermat Congruence a P-1 ≡1 mod P , 1912 .

[18]  A. Maximov,et al.  Fast computation of large distributions and its cryptographic applications , 2005 .

[19]  M. Anwar Hasan,et al.  Elliptic Curve Scalar Multiplication Combining Yao's Algorithm and Double Bases , 2009, CHES.

[20]  Christophe Doche,et al.  A Tree-Based Approach for Computing Double-Base Chains , 2008, ACISP.

[21]  Laurent Imbert,et al.  The double-base number system and its application to elliptic curve cryptography , 2007, Math. Comput..

[22]  P. Erdos,et al.  Carmichael's lambda function , 1991 .

[23]  G. N. Purohit,et al.  Fast Scalar Multiplication in ECC using The Multi base Number System , 2011, IACR Cryptol. ePrint Arch..

[24]  Patrick Longa,et al.  Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields , 2008, IACR Cryptol. ePrint Arch..