High-efficiency nondoped green organic light-emitting devices

Abstract A high-efficiency nondoped green organic light-emitting device was demonstrated by using a novel electroluminescent material 3,6-di[8-(7,10-diphenylfluoranthenyl)] phenyl-9-[8-(7,10-diphenylfluoranthenyl)] phenylcarbazole (TDPFPC) as an efficient electrofluorescence emitter. The device with a simple structure of ITO/α-napthylphenylbiphenyl diamine/TDPFPC/4,7-diphenyl-1,10-phenanthroline/LiF/Al exhibited green emission with Commission Internationale de L’Eclairage coordinates of (0.25, 0.49), a high current efficiency of 10.1 cd/A, and a high power efficiency of 12.1 lm/W.

[1]  Jang‐Joo Kim,et al.  Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems , 2003 .

[2]  E. Namdas,et al.  Synthesis and properties of highly efficient electroluminescent green phosphorescent iridium cored dendrimers , 2003 .

[3]  Yang Yang,et al.  Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes , 2001 .

[4]  Shui-Tong Lee,et al.  Efficient green organic light-Emitting devices with a nondoped dual-functional electroluminescent material , 2007 .

[5]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[6]  Marco Salerno,et al.  Multifunctional platinum porphyrin dendrimers as emitters in undoped phosphorescent based light emitting devices , 2006 .

[7]  Zhiling Xu,et al.  Aggregation and permeation of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran molecules in Alq , 2002 .

[8]  Zakya H. Kafafi,et al.  Efficient organic light-emitting diodes with undoped active layers based on silole derivatives , 2002 .

[9]  G. Bazan,et al.  Synthesis, morphology and optoelectronic properties of tris[(N-ethylcarbazolyl)(3′,5′-hexyloxybenzoyl)methane](phenanthroline)europium , 2000 .

[10]  Li-Jun Wan,et al.  Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study. , 2005, The journal of physical chemistry. B.

[11]  Chih-Hung Tsai,et al.  Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene , 2004 .

[12]  Jenn‐Fang Chen,et al.  High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units , 2004 .

[13]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[14]  H. Antoniadis,et al.  Blue-green organic light-emitting diodes based on fluorene-oxadiazole compounds , 1998 .

[15]  Ching Wan Tang,et al.  High-efficiency tandem organic light-emitting diodes , 2004 .

[16]  Jianmin Shi,et al.  Metal chelates as emitting materials for organic electroluminescence , 1998 .

[17]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[18]  N. Yamada,et al.  11.2: Novel Fluorene‐Based Blue Emitters for High Performance OLEDs , 2004 .

[19]  Fuyou Li,et al.  Carbazole-functionalized europium complex and its high-efficiency organic electroluminescent properties , 2003 .

[20]  S. So,et al.  A Multifunctional Platinum-Based Triplet Emitter for OLED Applications# , 2005 .

[21]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[22]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[23]  Hiroshi Inada,et al.  Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material , 1994 .