Multiscale model reduction for shale gas transport in fractured media

In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach.

[1]  R. Arnett,et al.  Modelling fluid flow in fractured‐porous rock masses by finite‐element techniques , 1984 .

[2]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[3]  Seong H. Lee,et al.  Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media , 2008 .

[4]  Zhiming Chen,et al.  Numerical Homogenization of Well Singularities in the Flow Transport through Heterogeneous Porous Media , 2003, Multiscale Model. Simul..

[5]  Hamdi A. Tchelepi,et al.  Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations , 2009, J. Comput. Phys..

[6]  I. Akkutlu,et al.  Permeability of Organic-Rich Shale , 2014 .

[7]  D. Sorensen,et al.  Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media , 2011 .

[8]  Zhijiang Kang,et al.  A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs , 2011 .

[9]  Patrick Jenny,et al.  Iterative multiscale finite-volume method , 2008, J. Comput. Phys..

[10]  Patrick Jenny,et al.  Modeling complex wells with the multi-scale finite-volume method , 2009, J. Comput. Phys..

[11]  Yalchin Efendiev,et al.  Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method , 2015, GEM - International Journal on Geomathematics.

[12]  Mehdi Ghommem,et al.  Multiscale empirical interpolation for solving nonlinear PDEs , 2014, J. Comput. Phys..

[13]  M. Karimi-Fard,et al.  Numerical Simulation of Water Injection in Fractured Media Using the Discrete-Fracture Model and the Galerkin Method , 2003 .

[14]  J. Noorishad,et al.  An upstream finite element method for solution of transient transport equation in fractured porous media , 1982 .

[15]  Yalchin Efendiev,et al.  An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..

[16]  Carl H. Sondergeld,et al.  Micro-Structural Studies of Gas Shales , 2010 .

[17]  A. Gangi,et al.  Variation of whole and fractured porous rock permeability with confining pressure , 1978 .

[18]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[19]  L. Durlofsky,et al.  Upscaling Discrete Fracture Characterizations to Dual-Porosity, Dual-Permeability Models for Efficient Simulation of Flow With Strong Gravitational Effects , 2008 .

[20]  Peter Dietrich,et al.  Flow and transport in fractured porous media , 2005 .

[21]  Victor M. Calo,et al.  Randomized Oversampling for Generalized Multiscale Finite Element Methods , 2014, Multiscale Model. Simul..

[22]  M. F. Lough,et al.  A new method to calculate the effective permeability of grid blocks used in the simulation of naturally fractured reservoirs , 1997 .

[23]  M. F. Lough,et al.  Hierarchical modeling of flow in naturally fractured formations with multiple length scales , 2001 .

[24]  Patrick Jenny,et al.  A Loosely Coupled Hierarchical Fracture Model for the Iterative Multiscale Finite Volume Method , 2011, ANSS 2011.

[25]  Yalchin Efendiev,et al.  Multi-scale Asymptotic Analysis of Gas Transport in Shale Matrix , 2015, Transport in Porous Media.

[26]  Zhixue Sun,et al.  Numerical simulation of gas transport mechanisms in tight shale gas reservoirs , 2013, Petroleum Science.

[27]  Jianfang Li,et al.  A Generalized Framework Model for Simulation of Gas Production in Unconventional Gas Reservoirs , 2013, ANSS 2013.

[28]  Hamdi A. Tchelepi,et al.  Well Modeling in the Multiscale Finite Volume Method for Subsurface Flow Simulation , 2006, Multiscale Model. Simul..

[29]  Patrick Jenny,et al.  Adaptive iterative multiscale finite volume method , 2011, J. Comput. Phys..

[30]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[31]  I. Akkutlu,et al.  Multiscale Gas Transport in Shales With Local Kerogen Heterogeneities , 2012 .

[32]  Richard E. Ewing,et al.  A Multiple-Continuum Approach For Modeling Multiphase Flow in Naturally Fractured Vuggy Petroleum Reservoirs , 2006, All Days.

[33]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[34]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[35]  Abbas Firoozabadi,et al.  Numerical Simulation of Water Injection in 2D Fractured Media Using Discrete-Fracture Model , 2001 .

[36]  Hadi Hajibeygi,et al.  Algebraic Multiscale Solver for Flow in Heterogeneous Fractured Porous Media , 2015, ANSS 2015.

[37]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[38]  R. Helmig,et al.  A mixed-dimensional finite volume method for two-phase flow in fractured porous media , 2006 .

[39]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[40]  Ivan Lunati,et al.  An iterative multiscale finite volume algorithm converging to the exact solution , 2011, J. Comput. Phys..

[41]  Carl H. Sondergeld,et al.  Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations , 2012 .

[42]  Yalchin Efendiev,et al.  Local-global multiscale model reduction for flows in high-contrast heterogeneous media , 2012, J. Comput. Phys..