The free mesh method (FMM) is simple, accurate and suitable for parallel computing. In this method, the total stiffness matrix is obtained by assembling the temporary local element matrices, so the method does not require connectivity between nodes and elements as input information. This paper describes FMM using Delaunay tesselation at the stage of creating a set of temporary local elements around each node during application to a 3-dimensional problem. In the analysis of a steady thermal conduction problem, the result of the present method was virtually the same as that of the usual FEM using global Delaunay tesselation. The CPU times with FMM and FEM were compared for problems of varing sizes. Results showed that the present method was highly efficient for dealing with larger problems.
[1]
T. Belytschko,et al.
Element‐free Galerkin methods
,
1994
.
[2]
D. Shenton,et al.
Three-Dimensional finite element mesh generation using delaunay tesselation
,
1985
.
[3]
Joseph J Monaghan,et al.
An introduction to SPH
,
1987
.
[4]
G. Yagawa,et al.
Free mesh method: A new meshless finite element method
,
1996
.
[5]
B. Nayroles,et al.
Generalizing the finite element method: Diffuse approximation and diffuse elements
,
1992
.
[6]
Wing Kam Liu,et al.
Reproducing kernel particle methods
,
1995
.