Electronic Structure and Optical Quality of Nanocrystalline Y2O3 Film Surfaces and Interfaces on Silicon

Nanocrystalline yttrium oxide (Y2O3) thin films were made by sputter deposition onto silicon (100) substrates keeping the deposition temperature fixed at 300 °C. The surface/interface chemistry, Y–O bonding, and optical constants of the Y2O3 film surface and Y2O3–Si interface were evaluated by the combined use of X-ray photoelectron spectroscopy (XPS), depth-profiling, and spectroscopic ellipsometry (SE). XPS analyses indicate the binding energies (BEs) of the Y 3d doublet; i.e., the Y 3p5/2 and Y 3d3/2 peaks are located at 117.0 and 119.1 eV, respectively, characterizing yttrium in its highest chemical oxidation state (Y3+) in the grown films. The optical model is constructed based on the XPS depth profiles, which indicate that the Y2O3//Si heterostructure can be represented with Y2O3 film—YxSiyOz interfacial compound—Si substrate. Such a model accounts for the experimentally determined ellipsometry functions and accurately produces the dispersive index of refraction (n(λ)) of Y2O3 and YxSiyOz. The n(λ) ...

[1]  H. Swart,et al.  Characteristic properties of Y2SiO5:Ce thin films grown with PLD , 2009 .

[2]  Victor V. Atuchin,et al.  Surface crystallography and electronic structure of potassium yttrium tungstate , 2008 .

[3]  V. Loup,et al.  Microstructure and electrical characterizations of yttrium oxide and yttrium silicate thin films deposited by pulsed liquid-injection plasma-enhanced metal-organic chemical vapor deposition , 2004 .

[4]  V. Atuchin,et al.  Electrochemical properties of sputter-deposited MoO3 films in lithium microbatteries , 2012 .

[5]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[6]  A. K. Gutakovsky,et al.  Crystallization of amorphous Si nanoclusters in SiO(x) films using femtosecond laser pulse annealings. , 2012, Journal of nanoscience and nanotechnology.

[7]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[8]  J. Schwartz,et al.  Surface modification of Y2O3 nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  V. Atuchin,et al.  X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering. , 2011, ACS applied materials & interfaces.

[10]  T. Pan,et al.  Influence of Oxygen Content on the Physical and Electrical Properties of Thin Yttrium Oxide Dielectrics Deposited by Reactive RF Sputtering on Si Substrates , 2007 .

[11]  Y. Yokota,et al.  Optical and scintillation characteristics of Y2O3 transparent ceramic , 2010 .

[12]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[13]  H. Morkoç,et al.  Oxides, Oxides, and More Oxides: High-κ Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics , 2009 .

[14]  Michele Back,et al.  Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method , 2013, Journal of Nanoparticle Research.

[15]  Victor V. Atuchin,et al.  Low-Energy Ar + Ion-Beam-Induced Amorphization and Chemical Modification of Potassium Titanyl Arsenate (001) Crystal Surfaces , 2007 .

[16]  Y. Do,et al.  Structural effect of a two-dimensional SiO2 photonic crystal layer on extraction efficiency in sputter-deposited Y2O3:Eu3+ thin-film phosphors , 2007 .

[17]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[19]  J. R. Vázquez de Aldana,et al.  Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription , 2011 .

[20]  A. Kayani,et al.  Structure and AC conductivity of nanocrystalline Yttrium oxide thin films , 2011 .

[21]  A. K. Gutakovsky,et al.  VISIBLE AND NEAR-INFRARED LUMINESCENCE FROM SILICON NANOSTRUCTURES FORMED BY ION IMPLANTATION AND PULSE ANNEALING , 1997 .

[22]  K. Cheong,et al.  Effects of post-deposition annealing ambient on chemical, structural, and electrical properties of RF magnetron sputtered Y2O3 gate on gallium nitride , 2013 .

[23]  W. Kern The Evolution of Silicon Wafer Cleaning Technology , 1990 .

[24]  V. Atuchin,et al.  Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides , 2006 .

[25]  Hui Peng,et al.  Thermal barrier coating bonded by (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated composite coating prepared by two-step cyclic spray pyrolysis , 2014 .

[26]  T. Ohmi,et al.  Particle removal from silicon wafer surface in wet cleaning process , 1993 .

[27]  H. Swart,et al.  Conversion of Y3(Al,Ga)5O12:Tb3+ to Y2Si2O7:Tb3+ thin film by annealing at higher temperatures , 2013 .

[28]  Andrew J. Hess,et al.  Thermal Conductivity of Er+3: Y2O3 films grown by Atomic Layer Deposition , 2013 .

[29]  R. Dinu,et al.  Pulsed laser deposition , 1999 .

[30]  R. Singh,et al.  Low-temperature growth of Y2O3 thin films by ultraviolet-assisted pulsed laser deposition , 1999 .

[31]  S. Trolier-McKinstry,et al.  Real-time spectroscopic ellipsometry as a characterization tool for oxide molecular beam epitaxy , 2001 .

[32]  P. Guérin,et al.  Yttrium oxide thin films, Y2O3, grown by ion beam sputtering on Si , 2000 .

[33]  G. Kachurin,et al.  XPS study of ion‐beam‐assisted formation of Si nanostructures in thin SiO2 layers , 2002 .

[34]  C. Ramana,et al.  Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films. , 2013, ACS applied materials & interfaces.

[35]  Victor V. Atuchin,et al.  Formation of Inert Bi2Se3(0001) Cleaved Surface , 2011 .

[36]  V. Atuchin,et al.  Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films , 2012 .

[37]  K. Cheong,et al.  Microstructural and optical properties of ZrON/Si thin films , 2013 .

[38]  Min Han,et al.  Synthesis, Characterization, and Physicochemical Properties of Well-Coupled Y2O3 Nanobelt-Ag Nanocrystals Nanocomposites , 2008 .

[39]  V. Atuchin,et al.  Nb 3d and O 1s core levels and chemical bonding in niobates , 2005 .

[40]  L. Schlapbach,et al.  Oxygen-segregation-controlled epitaxy of Y2O3 films on Nb(110) , 2000 .

[41]  Jeong Rok Oh,et al.  Effects of symmetry, shape, and structural parameters of two-dimensional SiNx photonic crystal on the extracted light from Y2O3:Eu3+ film , 2009 .

[42]  Zheng-tang Liu,et al.  Structural and optical properties of yttrium trioxide thin films prepared by RF magnetron sputtering , 2011 .

[43]  H. Ishibashi,et al.  Electron density distribution and chemical bonding of Ln2O3 (Ln = Y, Tm, Yb) from powder X-ray diffraction data by the maximum-entropy method , 1994 .

[44]  R. Ewing,et al.  Electronic structure and thermodynamic stability of uranium-doped yttrium iron garnet , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  C. Julien,et al.  Structure and chemical properties of molybdenum oxide thin films , 2007 .

[46]  V. V. Atuchin,et al.  Spectroscopic ellipsometry characterization of the optical properties and thermal stability of ZrO2 films made by ion-beam assisted deposition , 2008 .

[47]  T. Ohmi,et al.  Erratum: “Chemical Structure of Interfacial Transition Layer Formed on Si(100) and Its Dependence on Oxidation Temperature, Annealing in Forming Gas, and Difference in Oxidizing Species” , 2013 .

[48]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[49]  Yutaka Nigara,et al.  Measurement of the Optical Constants of Yttrium Oxide , 1968 .

[50]  V. V. Atuchin,et al.  Growth and surface characterization of sputter-deposited molybdenum oxide thin films , 2007 .

[51]  H. Swart,et al.  The effect of different gas atmospheres on the structure, morphology and photoluminescence properties of pulsed laser deposited Y3(Al,Ga)5O12:Ce3+ nano thin films , 2013 .

[52]  Victor V. Atuchin,et al.  Growth and optical parameters of GaSe:Te crystals , 2010 .

[53]  M. K. Hota,et al.  Charge trapping and reliability characteristics of sputtered Y2O3 high-k dielectrics on N- and S-passivated germanium , 2009 .

[54]  G. D. Wilka,et al.  APPLIED PHYSICS REVIEW High- k gate dielectrics: Current status and materials properties considerations , 2001 .

[55]  G. J. Parker,et al.  Structural and optical properties of yttrium oxide thin films for planar waveguiding applications , 2010 .

[56]  Woo-Sik Kim,et al.  Thermal-stress stability of yttrium oxide as a buffer layer of metal-ferroelectric-insulator-semiconductor field effect transistor , 2005 .

[57]  M. Tomitori,et al.  Water Wettability of an Ultrathin Layer of Silicon Oxide Epitaxially Grown on a Rutile Titanium Dioxide (110) Surface , 2013 .

[58]  H. Swart,et al.  Effect of Different Annealing Temperatures on The Optical Properties of Y3(Al,Ga)5O12:Tb Thin Films Grown By PLD , 2014 .

[59]  V. Volodin,et al.  Silicon nanocrystal formation upon annealing of SiO2 layers implanted with Si ions , 2002 .

[60]  Christoph Adelmann,et al.  High-k dielectrics for future generation memory devices (Invited Paper) , 2009 .

[61]  Valentin Craciun,et al.  Pulsed laser deposition of Y2O3 on Si: characteristics of the interfacial layer , 2002, Advanced Laser Technologies.

[62]  Matthias Wessling,et al.  Spectroscopic ellipsometry analysis of a thin film composite membrane consisting of polysulfone on a porous α-alumina support. , 2012, ACS applied materials & interfaces.

[63]  V. P. Orekhova,et al.  Lasing and refractive indices of nanocrystalline ceramics of cubic Yttrium Oxide Y2O3 doped with Nd3+ and Yb3+ ions , 2003 .

[64]  T. Pan,et al.  Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-ISFET , 2007 .

[65]  J. Robertson Maximizing performance for higher K gate dielectrics , 2008 .

[66]  Emmanuelle A. Marquis,et al.  Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys , 2009 .

[67]  V. Atuchin,et al.  ELECTRONIC AND STRUCTURAL PARAMETERS OF PHOSPHORUS–OXYGEN BONDS IN INORGANIC PHOSPHATE CRYSTALS , 2008 .

[68]  Nicolas Deligne,et al.  An Easy Route to Pure and Luminescent Eu-Doped YVO4 Polycrystalline Films Based on Molecular or Hybrid Precursors , 2011 .

[69]  Graham K. Hubler,et al.  Pulsed Laser Deposition , 1992 .

[70]  Lianmao Peng,et al.  Growth and performance of yttrium oxide as an ideal high-kappa gate dielectric for carbon-based electronics. , 2010, Nano letters.

[71]  V. V. Atuchin,et al.  Enhanced optical constants of nanocrystalline yttrium oxide thin films , 2011 .