Compression estimates using behavioral and otoacoustic emission measures

[1]  David A Nelson,et al.  Peripheral compression as a function of stimulus level and frequency region in normal-hearing listeners. , 2004, The Journal of the Acoustical Society of America.

[2]  Nigel P. Cooper,et al.  Compression in the Peripheral Auditory System , 2004 .

[3]  Catherine G. O’Hanlon,et al.  Forward Masking Additivity and Auditory Compression at Low and High Frequencies , 2003, Journal of the Association for Research in Otolaryngology.

[4]  Vit Drga,et al.  Psychophysical evidence for auditory compression at low characteristic frequencies. , 2003, The Journal of the Acoustical Society of America.

[5]  Ray Meddis,et al.  Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. , 2003, The Journal of the Acoustical Society of America.

[6]  Tiffany A. Johnson,et al.  Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears. , 2001, The Journal of the Acoustical Society of America.

[7]  D A Nelson,et al.  A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. , 2001, The Journal of the Acoustical Society of America.

[8]  Alfred L Nuttall,et al.  Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea , 2001, Hearing Research.

[9]  W. S. Rhode,et al.  Study of mechanical motions in the basal region of the chinchilla cochlea. , 2000, The Journal of the Acoustical Society of America.

[10]  M. Hicks,et al.  The effects of aspirin on a psychophysical estimate of basilar membrane compression , 2000 .

[11]  Anthony W. Gummer,et al.  Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea , 2000, Hearing Research.

[12]  A. Oxenham,et al.  Basilar-membrane nonlinearity estimated by pulsation threshold. , 2000, The Journal of the Acoustical Society of America.

[13]  B C Moore,et al.  Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. , 1999, The Journal of the Acoustical Society of America.

[14]  M. L. Hicks,et al.  Effects of aspirin on psychophysical measures of frequency selectivity, two-tone suppression, and growth of masking. , 1999, The Journal of the Acoustical Society of America.

[15]  S. Bacon,et al.  Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing. , 1999, The Journal of the Acoustical Society of America.

[16]  P. A. Dorn,et al.  On the existence of an age/threshold/frequency interaction in distortion product otoacoustic emissions. , 1998, The Journal of the Acoustical Society of America.

[17]  T. Janssen,et al.  The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. , 1998, The Journal of the Acoustical Society of America.

[18]  T. Janssen,et al.  Growth behavior of the 2 f1-f2 distortion product otoacoustic emission in tinnitus. , 1998, The Journal of the Acoustical Society of America.

[19]  A. Oxenham,et al.  Basilar-membrane nonlinearity and the growth of forward masking. , 1996, The Journal of the Acoustical Society of America.

[20]  W. S. Rhode,et al.  Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. , 1997, Journal of neurophysiology.

[21]  A. Oxenham,et al.  A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. , 1997, The Journal of the Acoustical Society of America.

[22]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[23]  A. Nuttall,et al.  Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. , 1996, The Journal of the Acoustical Society of America.

[24]  Mario A. Ruggero,et al.  The effects of acoustic trauma, other cochlear injury and death on basilar-membrane responses to sound , 1996 .

[25]  William S. Rhode,et al.  Nonlinear mechanics at the apex of the guinea-pig cochlea , 1995, Hearing Research.

[26]  G. K. Yates,et al.  Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: Variations with characteristic frequency , 1994, Hearing Research.

[27]  M. Ruggero,et al.  Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Mario A. Ruggero,et al.  Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration , 1991, Hearing Research.

[29]  L. Robles,et al.  Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.

[30]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[31]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[32]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[33]  J. Zwislocki Theory of Temporal Auditory Summation , 1960 .

[34]  D. M. Green,et al.  Signal Detection as a Function of Signal Intensity and Duration , 1957 .