Human Gut Microbiome: Function Matters.

The human gut microbiome represents a complex ecosystem contributing essential functions to its host. Recent large-scale metagenomic studies have provided insights into its structure and functional potential. However, the functional repertoire which is actually contributed to human physiology remains largely unexplored. Here, by leveraging recent omics datasets, we challenge current assumptions regarding key attributes of the functional gut microbiome, in particular with respect to its variability. We further argue that the closing of existing gaps in functional knowledge should be addressed by a most-wanted gene list, the development and application of molecular and cellular high-throughput measurements, the development and sensible use of experimental models, as well as the direct study of observable molecular effects in the human host.

[1]  Alexandros Stamatakis,et al.  Metagenomic species profiling using universal phylogenetic marker genes , 2013, Nature Methods.

[2]  Johannes Alneberg,et al.  DESMAN: a new tool for de novo extraction of strains from metagenomes , 2017, Genome Biology.

[3]  C. Huttenhower,et al.  Functional profiling of the gut microbiome in disease-associated inflammation , 2013, Genome Medicine.

[4]  F. Hollfelder,et al.  Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics , 2015, Nature Communications.

[5]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[6]  E. Zoetendal,et al.  Duodenal infusion of donor feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[7]  Paul Wilmes,et al.  A biomolecular isolation framework for eco-systems biology , 2012, The ISME Journal.

[8]  R. Colman,et al.  Genomic Characterization of Burkholderia pseudomallei Isolates Selected for Medical Countermeasures Testing: Comparative Genomics Associated with Differential Virulence , 2015, PloS one.

[9]  Shaocun Zhang,et al.  Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research , 2017, Front. Cell. Infect. Microbiol..

[10]  M. Delledonne,et al.  Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach , 2016, The ISME Journal.

[11]  Elhanan Borenstein,et al.  Systematic Characterization and Analysis of the Taxonomic Drivers of Functional Shifts in the Human Microbiome. , 2017, Cell host & microbe.

[12]  J. Parkinson,et al.  Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality , 2016, Microbiome.

[13]  M. Ferrer,et al.  Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. , 2013, Environmental microbiology.

[14]  J. Walter,et al.  Human Microbiota-Associated Mice: A Model with Challenges. , 2016, Cell host & microbe.

[15]  Thilo Muth,et al.  Colonic metaproteomic signatures of active bacteria and the host in obesity , 2015, Proteomics.

[16]  M. Blaser,et al.  The human microbiome: at the interface of health and disease , 2012, Nature Reviews Genetics.

[17]  Judy H. Cho,et al.  Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease , 2014, Cell.

[18]  B. Walker Conserving Biological Diversity through Ecosystem Resilience , 1995 .

[19]  B. Birren,et al.  The “Most Wanted” Taxa from the Human Microbiome for Whole Genome Sequencing , 2012, PloS one.

[20]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[21]  M. Ferrer,et al.  Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. , 2016, Trends in microbiology.

[22]  Haixu Tang,et al.  A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics , 2016, PLoS Comput. Biol..

[23]  Maria T. Abreu,et al.  Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function , 2010, Nature Reviews Immunology.

[24]  L. Proctor,et al.  The National Institutes of Health Human Microbiome Project. , 2016, Seminars in fetal & neonatal medicine.

[25]  Brandi L. Cantarel,et al.  Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease , 2012, PloS one.

[26]  Andrea Rinaldo,et al.  Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. , 2015, Ecology.

[27]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[28]  Mark A. van de Wiel,et al.  General power and sample size calculations for high-dimensional genomic data , 2013, Statistical applications in genetics and molecular biology.

[29]  H. Endtz,et al.  A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome , 2012, European Journal of Clinical Microbiology & Infectious Diseases.

[30]  K. McCann The diversity–stability debate , 2000, Nature.

[31]  J. Raes,et al.  The resilience of the intestinal microbiota influences health and disease , 2017, Nature Reviews Microbiology.

[32]  Rob Knight,et al.  ConStrains identifies microbial strains in metagenomic datasets , 2015, Nature Biotechnology.

[33]  J. Doré,et al.  Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. , 2015, Environmental microbiology.

[34]  F. Bäckhed,et al.  The gut microbiota — masters of host development and physiology , 2013, Nature Reviews Microbiology.

[35]  T. Muth,et al.  The impact of sequence database choice on metaproteomic results in gut microbiota studies , 2016, Microbiome.

[36]  U. Nöthlings,et al.  Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota , 2016, Nature Genetics.

[37]  Rob Knight,et al.  Temporal variability is a personalized feature of the human microbiome , 2014, Genome Biology.

[38]  P. Savelkoul,et al.  Composition and stability of intestinal microbiota of healthy children within a Dutch population , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  Krzysztof J. Szkop,et al.  Multiple sources of bias confound functional enrichment analysis of global -omics data , 2015, Genome Biology.

[40]  Christian Milani,et al.  Bacteria as vitamin suppliers to their host: a gut microbiota perspective. , 2013, Current opinion in biotechnology.

[41]  D. Stien,et al.  Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences , 2017, Scientific Reports.

[42]  T. R. Licht,et al.  Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut , 2016, Nature Microbiology.

[43]  R. Gunsalus,et al.  Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1 , 2015, Front. Microbiol..

[44]  Adam Godzik,et al.  Shotgun metaproteomics of the human distal gut microbiota , 2008, The ISME Journal.

[45]  Yuzhen Ye,et al.  Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota , 2015, Front. Microbiol..

[46]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[47]  Elhanan Borenstein,et al.  Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome , 2017, Microbiome.

[48]  Jeffrey E. Barrick,et al.  Genomic Analysis of a Key Innovation in an Experimental E. coli Population , 2012, Nature.

[49]  Rafael Bargiela,et al.  Gut microbiota disturbance during antibiotic therapy: a multi-omic approach , 2012, Gut.

[50]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[51]  J. Doré,et al.  Correction: Functional Metagenomics: A High Throughput Screening Method to Decipher Microbiota-Driven NF-κB Modulation in the Human Gut , 2010, PLoS ONE.

[52]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[53]  H. Weiner,et al.  The Host Shapes the Gut Microbiota via Fecal MicroRNA. , 2016, Cell host & microbe.

[54]  Liping Zhao,et al.  Strain-level dissection of the contribution of the gut microbiome to human metabolic disease , 2016, Genome Medicine.

[55]  H. Blottière,et al.  High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies , 2013, PloS one.

[56]  Paul Wilmes,et al.  From meta-omics to causality: experimental models for human microbiome research , 2013, Microbiome.

[57]  Katherine H. Huang,et al.  Identifying personal microbiomes using metagenomic codes , 2015, Proceedings of the National Academy of Sciences.

[58]  George M Church,et al.  The human microbiome harbors a diverse reservoir of antibiotic resistance genes , 2010, Virulence.

[59]  Brian C. Thomas,et al.  Measurement of bacterial replication rates in microbial communities , 2016, Nature Biotechnology.

[60]  Richard J. Giannone,et al.  Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut , 2014, Journal of proteome research.

[61]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[62]  Paul Wilmes,et al.  A microfluidics-based in vitro model of the gastrointestinal human–microbe interface , 2016, Nature Communications.

[63]  Jeroen Raes,et al.  How informative is the mouse for human gut microbiota research? , 2015, Disease Models & Mechanisms.

[64]  Sean R. Eddy,et al.  Computational identification of functional RNA homologs in metagenomic data , 2013, RNA biology.

[65]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[66]  M. Pop,et al.  Capturing the most wanted taxa through cross-sample correlations , 2016, The ISME Journal.

[67]  K. Pollard,et al.  An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography , 2016, Genome research.

[68]  M. Kleerebezem,et al.  Multifactorial diversity sustains microbial community stability , 2013, The ISME Journal.

[69]  M. Hattori,et al.  Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota , 2013, Nature.

[70]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[71]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[72]  Takuji Yamada,et al.  High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice , 2016, Nature Microbiology.

[73]  Frederick Albert Matsen IV Phylogenetics and the Human Microbiome , 2014, Systematic biology.

[74]  C. Robert,et al.  Culture of previously uncultured members of the human gut microbiota by culturomics , 2016, Nature Microbiology.

[75]  Miguel Pignatelli,et al.  Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota , 2011, PloS one.

[76]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[77]  Kelly A. Carscadden,et al.  Beyond species: functional diversity and the maintenance of ecological processes and services , 2011 .

[78]  Farshad Khunjush,et al.  Computational approaches for prediction of pathogen-host protein-protein interactions , 2015, Front. Microbiol..

[79]  A. Paterson,et al.  Association of host genome with intestinal microbial composition in a large healthy cohort , 2016, Nature Genetics.

[80]  M. Hattori,et al.  Multiple Omics Uncovers Host–Gut Microbial Mutualism During Prebiotic Fructooligosaccharide Supplementation , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[81]  Gregory S. Stupp,et al.  Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease. , 2017, Journal of proteome research.

[82]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[83]  C. Schadt,et al.  PanFP: pangenome-based functional profiles for microbial communities , 2015, BMC Research Notes.

[84]  S. Allison,et al.  Resistance, resilience, and redundancy in microbial communities , 2008, Proceedings of the National Academy of Sciences.

[85]  Sam P. Brown,et al.  Single gene locus changes perturb complex microbial communities as much as apex predator loss , 2015, Nature Communications.

[86]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2013, Nucleic Acids Res..

[87]  S. Olesen,et al.  Dysbiosis is not an answer , 2016, Nature Microbiology.

[88]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[89]  K. Foster,et al.  The ecology of the microbiome: Networks, competition, and stability , 2015, Science.

[90]  Josh D. Neufeld,et al.  Current and future resources for functional metagenomics , 2015, Front. Microbiol..

[91]  Peng Liu,et al.  Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments , 2016, BMC Bioinformatics.

[92]  Peer Bork,et al.  proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes , 2016, Nucleic Acids Res..

[93]  J. Collins,et al.  Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip , 2015, Proceedings of the National Academy of Sciences.

[94]  H. Guillou,et al.  The gut microbiota: a major player in the toxicity of environmental pollutants? , 2016, npj Biofilms and Microbiomes.

[95]  Damian Szklarczyk,et al.  eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges , 2011, Nucleic Acids Res..

[96]  T. Vatanen,et al.  The effect of host genetics on the gut microbiome , 2016, Nature Genetics.

[97]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[98]  Sang-Uk Seo,et al.  Role of the gut microbiota in immunity and inflammatory disease , 2013, Nature Reviews Immunology.

[99]  Bernard Henrissat,et al.  The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins , 2011, Science Translational Medicine.

[100]  James T. Morton,et al.  Microbiome-wide association studies link dynamic microbial consortia to disease , 2016, Nature.

[101]  W. Karasov,et al.  Ecological physiology of diet and digestive systems. , 2011, Annual review of physiology.

[102]  P. Turnbaugh,et al.  Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome , 2013, Cell.

[103]  P. Bork,et al.  Durable coexistence of donor and recipient strains after fecal microbiota transplantation , 2016, Science.

[104]  Luis Pedro Coelho,et al.  metaSNV: A tool for metagenomic strain level analysis , 2017, PloS one.

[105]  G. Prosser,et al.  Metabolomic strategies for the identification of new enzyme functions and metabolic pathways , 2014, EMBO reports.

[106]  P. Bork,et al.  Human gut microbes impact host serum metabolome and insulin sensitivity , 2016, Nature.

[107]  Shahid Naeem,et al.  Species Redundancy and Ecosystem Reliability , 1998 .

[108]  S. Schreiber,et al.  Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. , 2017, Gastroenterology.

[109]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[110]  Katherine S. Pollard,et al.  MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome , 2015, Bioinform..

[111]  Duy Tin Truong,et al.  Strain-level microbial epidemiology and population genomics from shotgun metagenomics , 2016, Nature Methods.

[112]  A. Heintz‐Buschart,et al.  IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses , 2016, Genome Biology.

[113]  Peter B Reich,et al.  Microbial diversity drives multifunctionality in terrestrial ecosystems , 2016, Nature Communications.

[114]  Susannah G. Tringe,et al.  FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus , 2014, Nucleic acids research.

[115]  Eran Segal,et al.  Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples , 2015, Science.

[116]  A. Heintz‐Buschart,et al.  Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes , 2016, Nature Microbiology.

[117]  G. Gloor,et al.  Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut , 2013, Microbiome.

[118]  S. Epstein,et al.  In situ cultivation of previously uncultivable microorganisms using the ichip , 2017, Nature Protocols.

[119]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[120]  Leo Lahti,et al.  Fat, Fiber and Cancer Risk in African Americans and Rural Africans , 2015, Nature Communications.

[121]  Bernard Henrissat,et al.  Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins , 2010, Proceedings of the National Academy of Sciences.

[122]  A. K. Singh,et al.  Mobile genes in the human microbiome are structured from global to individual scales , 2016, Nature.

[123]  Peer Bork,et al.  Transcriptional interactions suggest niche segregation among microorganisms in the human gut , 2016, Nature Microbiology.

[124]  Peter Dawyndt,et al.  Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. , 2016, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[125]  H. Tjalsma,et al.  Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. , 2013, Best practice & research. Clinical gastroenterology.