A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces

Solid-state electrolytes attract great attention due to their advantages in safety, electrochemical stability and battery packaging. High-voltage cathode materials and the Li metal anode further increase the energy density and electrochemical cycling properties.

[1]  M. Gondal,et al.  Economical and efficient dye sensitized solar cells using single wall carbon nanotube-titanium dioxide nanocomposites as photoanode and SWCNT as Pt-free counter electrode , 2022, Solar Energy.

[2]  Xueping Gao,et al.  Li3InCl6-coated LiCoO2 for high-performance all solid-state batteries , 2022, Applied Physics Letters.

[3]  Wengao Zhao,et al.  A Polymerized‐Ionic‐Liquid‐Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid‐State Lithium Metal Batteries , 2022, Advanced Energy Materials.

[4]  Mingxue Tang,et al.  Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery , 2022, Nano Energy.

[5]  Huilin Pan,et al.  The interphasial degradation of 4.2 V-class poly(ethylene oxide)-based solid batteries beyond electrochemical voltage limit , 2022, Journal of Energy Chemistry.

[6]  Yuanhua Lin,et al.  Super Long‐Cycling All‐Solid‐State Battery with Thin Li6PS5Cl‐Based Electrolyte , 2022, Advanced Energy Materials.

[7]  Su-Ho Cho,et al.  Investigation of Ordering on Oxygen-Deficient LiNi0.5 Mn1.5 O4-δ Thin Films for Boosting Electrochemical Performance in All-Solid-State Thin-Film Batteries. , 2022, Small.

[8]  Y. Meng,et al.  Unraveling the Stable Cathode Electrolyte Interface in all Solid‐State Thin‐Film Battery Operating at 5 V , 2022, Advanced Energy Materials.

[9]  Yueying Zhang,et al.  In-situ formation of Li0.5Mn0.5O coating layer through defect controlling for high performance Li-rich manganese-based cathode material , 2022, Journal of Energy Chemistry.

[10]  M. Martínez-Ibañez,et al.  Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes , 2022, ACS Energy Letters.

[11]  Zhen Chen,et al.  Polysiloxane‐Based Single‐Ion Conducting Polymer Blend Electrolyte Comprising Small‐Molecule Organic Carbonates for High‐Energy and High‐Power Lithium‐Metal Batteries , 2022, Advanced Energy Materials.

[12]  Kai Xie,et al.  Design of a Fast Ion-transport Interlayer on Cathode-Electrolyte Interface for Solid-State Lithium Metal Batteries , 2022, Energy Storage Materials.

[13]  G. Yin,et al.  Constructing Interfacial Nanolayer Stabilizes 4.3 V High‐Voltage All‐Solid‐State Lithium Batteries with PEO‐Based Solid‐State Electrolyte , 2022, Advanced Functional Materials.

[14]  Yunhui Huang,et al.  Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry , 2022, Journal of Energy Chemistry.

[15]  Zonghai Chen,et al.  Hydrogen Bonds Enhanced Composite Polymer Electrolyte for High-Voltage Cathode of Solid-State Lithium Battery , 2022, Nano Energy.

[16]  Dukjoon Kim,et al.  High voltage stable solid-state lithium battery based on the nano-conductor imbedded flexible hybrid solid electrolyte with hyper-ion conductivity and thermal, mechanical, and adhesive stability , 2022, Chemical Engineering Journal.

[17]  Zhijie Guo,et al.  A Multifunctional Silicon-Doped Polyether Network for Double Stable Interfaces in Quasi-Solid-State Lithium Metal Batteries. , 2022, Small.

[18]  L. Nazar,et al.  High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes , 2022, Nature Energy.

[19]  Wang Ke-fan,et al.  Atomic structure, electronic structure and optical absorption of inorganic perovskite compounds Cs2SnI6-nXn (X = F, Cl, br; n = 0 ∼ 6): A first-principles study , 2021, Solar Energy.

[20]  W. Luo,et al.  Magnetic Actuation Enables Programmable Lithium Metal Engineering , 2022 .

[21]  Changhong Wang,et al.  Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes , 2021, ACS Energy Letters.

[22]  K. Edström,et al.  Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives , 2021, Advanced Energy Materials.

[23]  Weihua Chen,et al.  An effective solid-electrolyte interphase for stable solid-state batteries , 2021, Chem.

[24]  Liquan Chen,et al.  5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries , 2021, Nano Energy.

[25]  J. Sann,et al.  Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries , 2021, ACS Applied Energy Materials.

[26]  Jia Guo,et al.  Achieving superior high-rate cyclability of LiNi0.5Mn1.5O4 cathode material via constructing stable CuO modification interface , 2021, Journal of Electroanalytical Chemistry.

[27]  R. Cao,et al.  A Quasi‐Double‐Layer Solid Electrolyte with Adjustable Interphases Enabling High‐Voltage Solid‐State Batteries , 2021, Advanced materials.

[28]  Xiangfeng Liu,et al.  Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6V LiCoO2 cathodes. , 2021, Angewandte Chemie.

[29]  Seungho Yu,et al.  Structural and Chemical Compatibilities of Li1- x Ni0.5 Co0.2 Mn0.3 O2 Cathode Material with Garnet-Type Solid Electrolyte for All-Solid-State Batteries. , 2021, Small.

[30]  Yong Yang,et al.  Linking the Defects to the Formation and Growth of Li Dendrite in All‐Solid‐State Batteries , 2021, Advanced Energy Materials.

[31]  Suojiang Zhang,et al.  Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery , 2021, Energy Storage Materials.

[32]  Jianzhong Wu,et al.  Regulating lithium deposition via electropolymerization of acrylonitrile in rechargeable lithium metal batteries , 2021 .

[33]  Yunhui Huang,et al.  Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries , 2021 .

[34]  Yang Zhao,et al.  PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries , 2021 .

[35]  Xinyue Zhao,et al.  Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries , 2021 .

[36]  Kyung‐Won Park,et al.  Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions , 2021 .

[37]  Z. Bi,et al.  Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries , 2021 .

[38]  Fernando A. Soto,et al.  The passivity of lithium electrodes in liquid electrolytes for secondary batteries , 2021, Nature Reviews Materials.

[39]  Chaoqun Niu,et al.  High-Voltage Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solid-State Lithium Metal Batteries with Nickel-Rich Cathodes. , 2021, Angewandte Chemie.

[40]  C. Iojoiu,et al.  Lithium Phosphonate Functionalized Polymer Coating for High‐Energy Li[Ni0.8Co0.1Mn0.1]O2 with Superior Performance at Ambient and Elevated Temperatures , 2021, Advanced Functional Materials.

[41]  Yutao Li,et al.  Fluorinated Poly‐oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for All‐Solid‐State Li/NMC811 Batteries , 2021, Angewandte Chemie.

[42]  Yan‐Bing He,et al.  Progress and perspective of Li 1 +   x Al x Ti 2 ‐x ( PO 4 ) 3 cer , 2021, InfoMat.

[43]  G. Cui,et al.  A rigid-flexible coupling gel polymer electrolyte towards high safety flexible Li-Ion battery , 2021, Journal of Power Sources.

[44]  Yutao Li,et al.  Li 2 S 6 ‐Integrated PEO‐Based Polymer Electrolytes for All‐Solid‐State Lithium‐Metal Batteries , 2021, Angewandte Chemie.

[45]  Guohua Chen,et al.  Toward High Performance All‐Solid‐State Lithium Batteries with High‐Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes , 2021, Advanced Energy Materials.

[46]  Hong‐Jie Peng,et al.  A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries , 2021, Advanced Functional Materials.

[47]  Chen‐Zi Zhao,et al.  Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries , 2021, Advanced Energy Materials.

[48]  G. Du,et al.  Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte , 2021 .

[49]  Jinping Liu,et al.  Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries , 2021, Angewandte Chemie.

[50]  Feng Li,et al.  Double ionic-electronic transfer interface layers for all solid-state lithium batteries. , 2021, Angewandte Chemie.

[51]  P. Cui,et al.  10 μm‐Thick High‐Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All‐Solid‐State Lithium‐Metal Batteries , 2021, Advanced materials.

[52]  Zhenhai Gao,et al.  Safety challenges and safety measures of Li‐ion batteries , 2021, Energy Science & Engineering.

[53]  Shenmin Zhang,et al.  Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries , 2021 .

[54]  S. Rousselot,et al.  On the Importance of Li Metal Morphology on the Cycling of Lithium Metal Polymer Cells , 2021 .

[55]  K. Yan,et al.  Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[56]  F. Ciucci,et al.  Ultrathin and Non‐Flammable Dual‐Salt Polymer Electrolyte for High‐Energy‐Density Lithium‐Metal Battery , 2021, Advanced Functional Materials.

[57]  Jian-feng Li,et al.  Lithiophilic and Antioxidative Copper Current Collectors for Highly Stable Lithium Metal Batteries , 2021, Advanced Functional Materials.

[58]  Seong‐Hyeon Hong,et al.  Manganese Tetraphosphide (MnP4) as a High Capacity Anode for Lithium‐Ion and Sodium‐Ion Batteries , 2021, Advanced Energy Materials.

[59]  W. Luo,et al.  Mg‐Pillared LiCoO 2 : Towards Stable Cycling at 4.6 V , 2021, Angewandte Chemie.

[60]  Dongyang Zhang,et al.  Electrochemically Driven Phase Transition in LiCoO2 Cathode , 2021, Materials.

[61]  Q. Zhang,et al.  Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes , 2021, SSRN Electronic Journal.

[62]  A. Yousafzai,et al.  Mosquitocidal activities of Chenopodium botrys whole plant n-hexane extract against Culex quinquefasciatus. , 2021, Brazilian journal of biology = Revista brasleira de biologia.

[63]  Wen-Jun Zhang,et al.  Inside Cover: Mn−O Covalency Governs the Intrinsic Activity of Co‐Mn Spinel Oxides for Boosted Peroxymonosulfate Activation (Angew. Chem. Int. Ed. 1/2021) , 2021 .

[64]  G. Cui,et al.  Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries. , 2020, Small.

[65]  T. Kallio,et al.  Effect of Copper-Doping on LiNiO2 Positive Electrode for Lithium-Ion Batteries , 2020 .

[66]  V. Pol,et al.  Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study , 2020 .

[67]  Jian-jun Zhang,et al.  LiDFOB Initiated In Situ Polymerization of Novel Eutectic Solution Enables Room‐Temperature Solid Lithium Metal Batteries , 2020, Advanced science.

[68]  Xiaohui Shu,et al.  Equation of state of LiNi0·5Mn1·5O4 at high pressure , 2020 .

[69]  Liquan Chen,et al.  4.2 ​V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance , 2020 .

[70]  D. H. Jamali,et al.  Energy, exergy and economic analyses of new coal-fired cogeneration hybrid plant with wind energy resource , 2020 .

[71]  G. Cui,et al.  High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte , 2020 .

[72]  Chengyi Hou,et al.  Hierarchical Composite‐Solid‐Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultra‐Stable Lithium Batteries , 2020, Advanced Functional Materials.

[73]  Hui‐Ming Cheng,et al.  Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature , 2020, Advanced Functional Materials.

[74]  Soojin Park,et al.  Cover Picture: Lithium Metal Interface Modification for High‐Energy Batteries: Approaches and Characterization (Batteries & Supercaps 9/2020) , 2020 .

[75]  Xiaoen Wang,et al.  Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte , 2020, Journal of Solid State Electrochemistry.

[76]  Tong Chen,et al.  Study on the decline mechanism of cathode material LiCoO2 for Li-ion battery , 2020 .

[77]  Bingkun Guo,et al.  An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries , 2020, Advanced Energy Materials.

[78]  Yao Zhou,et al.  More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0·5Mn1·5O4 to achieve stable high-rate cycling cathode materials , 2020 .

[79]  O. Bondarchuk,et al.  Work Function Evolution in Li Anode Processing , 2020, Advanced Energy Materials.

[80]  G. Cui,et al.  Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery , 2020, Advanced Energy Materials.

[81]  Liquan Chen,et al.  Enabling Stable Cycling of 4.2 V High‐Voltage All‐Solid‐State Batteries with PEO‐Based Solid Electrolyte , 2020, Advanced Functional Materials.

[82]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[83]  Zhongwei Chen,et al.  Ni‐Rich/Co‐Poor Layered Cathode for Automotive Li‐Ion Batteries: Promises and Challenges , 2020, Advanced Energy Materials.

[84]  Weizhen Zeng,et al.  Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 by synergistic modification of sodium ion doping and silica coating , 2020, Solid State Ionics.

[85]  Lixin Qiao,et al.  A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries , 2020 .

[86]  Ping Liu,et al.  Protective coatings for lithium metal anodes: Recent progress and future perspectives , 2020 .

[87]  Yunhui Huang,et al.  Shaping the Contact between Li Metal Anode and Solid‐State Electrolytes , 2020, Advanced Functional Materials.

[88]  A. Manthiram,et al.  Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries , 2020 .

[89]  Wei Lv,et al.  Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries , 2020, Advanced science.

[90]  Wan-Yu Tsai,et al.  Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes , 2020 .

[91]  Dawei Song,et al.  LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery , 2020, Journal of Energy Chemistry.

[92]  P. Drobinski,et al.  Sub-hourly forecasting of wind speed and wind energy , 2020 .

[93]  Aijun Li,et al.  Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries , 2019, Advanced materials.

[94]  D. Parkinson,et al.  Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in Lithium Metal Electrodes , 2019, ACS Applied Energy Materials.

[95]  Erik A. Wu,et al.  Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries. , 2019, ACS applied materials & interfaces.

[96]  Tingfeng Yi,et al.  V2O5 modified LiNi0.5Mn1.5O4 as cathode material for high-performance Li-ion battery , 2019, Materials Letters.

[97]  Jesse D. Roberts,et al.  Reducing variability in the cost of energy of ocean energy arrays , 2019, Renewable and Sustainable Energy Reviews.

[98]  G. Shao,et al.  Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode. , 2019, ACS applied materials & interfaces.

[99]  M. Engelhard,et al.  Role of inorganic surface layer on solid electrolyte interphase evolution at Li-metal anodes. , 2019, ACS applied materials & interfaces.

[100]  A. Mauger,et al.  Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries , 2019, Journal of Power Sources.

[101]  Hao Liu,et al.  Preparation of a Homogeneous Li3PO4 Coating and Its Effect on the Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 , 2019, Journal of Electronic Materials.

[102]  S. Yao,et al.  High‐performance solid PEO/PPC/LLTO‐nanowires polymer composite electrolyte for solid‐state lithium battery , 2019, International Journal of Energy Research.

[103]  Aijun Li,et al.  Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte , 2019, Nano Energy.

[104]  Ya‐Xia Yin,et al.  Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. , 2019, Journal of the American Chemical Society.

[105]  A. Arabacı Conductivity properties of lanthanide-co-doped ceria-based solid oxide electrolytes , 2019, Ionics.

[106]  J. Janek,et al.  Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes , 2019, Chemistry of Materials.

[107]  S. Rehman,et al.  Assessment of wind energy potential using wind energy conversion system , 2019, Journal of Cleaner Production.

[108]  Chaoyi Yan,et al.  Composite solid electrolytes for all-solid-state lithium batteries , 2019, Materials Science and Engineering: R: Reports.

[109]  Maria Forsyth,et al.  Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. , 2019, Accounts of chemical research.

[110]  Federico Bella,et al.  UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries , 2019, ACS Applied Energy Materials.

[111]  Hyun‐Seok Kim,et al.  Electrochemical and cycling performance of neodymium (Nd3+) doped LiNiPO4 cathode materials for high voltage lithium-ion batteries , 2019 .

[112]  Soojin Park,et al.  Efficient Li‐Ion‐Conductive Layer for the Realization of Highly Stable High‐Voltage and High‐Capacity Lithium Metal Batteries , 2019, Advanced Energy Materials.

[113]  Ya‐Xia Yin,et al.  Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High‐Voltage Lithium Metal Batteries , 2019, Advanced materials.

[114]  Y. Chiang,et al.  Electrochemical Redox Behavior of Li Ion Conducting Sulfide Solid Electrolytes , 2019, Chemistry of Materials.

[115]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[116]  Mao‐xiang Jing,et al.  A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery , 2018, Electrochimica Acta.

[117]  Yu Zhu,et al.  A 4 V Cathode Compatible, Superionic Conductive Solid Polymer Electrolyte for Solid Lithium Metal Batteries with Long Cycle Life , 2018, ACS Applied Energy Materials.

[118]  J. Janek,et al.  Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. , 2018, ACS applied materials & interfaces.

[119]  Songjun Li,et al.  Bamboo shoot skin: turning waste to a valuable adsorbent for the removal of cationic dye from aqueous solution , 2018, Clean Technologies and Environmental Policy.

[120]  Shiyou Li,et al.  Porous LiMn2O4 with Al2O3 coating as high-performance positive materials , 2018, Ionics.

[121]  Ya‐Xia Yin,et al.  Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers , 2018, Advanced Energy Materials.

[122]  Liquan Chen,et al.  Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries , 2018, Journal of Power Sources.

[123]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[124]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[125]  Hao Zhang,et al.  A High‐Capacity O2‐Type Li‐Rich Cathode Material with a Single‐Layer Li2MnO3 Superstructure , 2018, Advanced materials.

[126]  Chong Seung Yoon,et al.  Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? , 2018 .

[127]  Minjoon Park,et al.  Prospect and Reality of Ni‐Rich Cathode for Commercialization , 2018 .

[128]  Chang Liu,et al.  A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy , 2017 .

[129]  Jian-jun Zhang,et al.  A Strategy to Make High Voltage LiCoO2 Compatible with Polyethylene Oxide Electrolyte in All-Solid-State Lithium Ion Batteries , 2017 .

[130]  Y. Gu,et al.  Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel , 2017, Journal of Materials Engineering and Performance.

[131]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[132]  Song Zhou,et al.  Influences of solar energy on the energy efficiency design index for new building ships , 2017 .

[133]  M. Winter,et al.  Lithium‐Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium‐Metal Batteries , 2017 .

[134]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[135]  Martin Winter,et al.  Phosphorus additives for improving high voltage stability and safety of lithium ion batteries , 2017 .

[136]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[137]  Kevin G. Gallagher,et al.  Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries , 2017 .

[138]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[139]  Sudipto Ghosh,et al.  Low temperature solid oxide electrolytes (LT-SOE): A review , 2017 .

[140]  Jaephil Cho,et al.  Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells , 2017 .

[141]  N. Kosova,et al.  Approaching better cycleability of LiCoPO4 by vanadium modification , 2016 .

[142]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[143]  Nemkumar Banthia,et al.  Energy harvesting from ocean waves by a floating energy harvester , 2016 .

[144]  Y. Orikasa,et al.  Dynamic Behavior at the Interface between Lithium Cobalt Oxide and an Organic Electrolyte Monitored by Neutron Reflectivity Measurements , 2016 .

[145]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[146]  Joon Ching Juan,et al.  A review of polymer electrolytes: fundamental, approaches and applications , 2016, Ionics.

[147]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[148]  P. Fischer,et al.  A review on lithium combustion , 2016 .

[149]  A. Kiliç,et al.  A review of nanofibrous structures in lithium ion batteries , 2015 .

[150]  F. Pan,et al.  Enhancing the High-Voltage Cycling Performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3. , 2015, ACS applied materials & interfaces.

[151]  Cheng Chen,et al.  W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries , 2015 .

[152]  Xiaoxiong Xu,et al.  Influence of the Li-Ge-P-S based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries , 2015 .

[153]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[154]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[155]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[156]  Youngsik Kim,et al.  Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. , 2015, ChemSusChem.

[157]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[158]  J. Tarascon,et al.  Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges , 2015 .

[159]  Lin Gu,et al.  Understanding the Rate Capability of High‐Energy‐Density Li‐Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials , 2014 .

[160]  Karim Zaghib,et al.  Comparative Issues of Cathode Materials for Li-Ion Batteries , 2014 .

[161]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[162]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[163]  Li Liu,et al.  Layered Li[Ni0.5Co0.2Mn0.3]O2–Li2MnO3 core–shell structured cathode material with excellent stability , 2013 .

[164]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[165]  B. Koel,et al.  Plasma facing surface composition during NSTX Li experiments , 2013 .

[166]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[167]  Xingjiang Liu,et al.  Solid-state synthesis of LiCoO2/LiCo0.99Ti0.01O2 composite as cathode material for lithium ion batteries , 2013 .

[168]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[169]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[170]  Kentaro Yoshida,et al.  High-capacity thin film lithium batteries with sulfide solid electrolytes , 2012 .

[171]  A. Mohamad,et al.  Galvanic corrosion of aluminum alloy (Al2024) and copper in 1.0M hydrochloric acid solution , 2012, Korean Journal of Chemical Engineering.

[172]  Rudolf Holze,et al.  The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane , 2012, Journal of Solid State Electrochemistry.

[173]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[174]  A. El-Amoush Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions , 2011 .

[175]  Ping Liu,et al.  Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material , 2011 .

[176]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[177]  Y. Park,et al.  The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material , 2010 .

[178]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[179]  A. Benayad,et al.  Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VO(x)-impregnated 0.5Li2MnO3-0.5LiNi(0.4)Co(0.2)Mn(0.4)O2 cathode. , 2010, Chemical communications.

[180]  Jaephil Cho,et al.  High Performance LiCoO2 Cathode Materials at 60 ° C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method , 2010 .

[181]  Rahul Singhal,et al.  High voltage spinel cathode materials for high energy density and high rate capability Li ion rechargeable batteries , 2009 .

[182]  Z. Ma,et al.  Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy , 2009 .

[183]  D. Saidi,et al.  Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy , 2008 .

[184]  Yo Kobayashi,et al.  Fabrication of All-Solid-State Lithium Polymer Secondary Batteries Using Al2O3-Coated LiCoO2 , 2005 .

[185]  Yo Kobayashi,et al.  Fabrication of High-Voltage, High-Capacity All-Solid-State Lithium Polymer Secondary Batteries by Application of the Polymer Electrolyte/Inorganic Electrolyte Composite Concept , 2005 .

[186]  Jingyu Xi,et al.  Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic-inorganic hybrid P123@SBA-15 , 2004 .

[187]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[188]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[189]  Zhonghua Lu,et al.  Staging Phase Transitions in Li x CoO2 , 2002 .

[190]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[191]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[192]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[193]  M. Odziemkowski,et al.  An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface , 1992 .

[194]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[195]  R. C. Galloway,et al.  A Sodium/Iron(II) Chloride Cell with a Beta Alumina Electrolyte , 1987 .

[196]  J. Coetzer,et al.  A new high energy density battery system , 1986 .

[197]  W. E. Moddeman,et al.  Surface reactions of lithium with the environment , 1981 .

[198]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[199]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[200]  J. Lund,et al.  The Reaction of Lithium with Water Vapor , 1963 .

[201]  M. Markowitz,et al.  Lithium Metal-Gas Reactions. , 1962 .