Curve Based Approximation of Measures on Manifolds by Discrepancy Minimization

The approximation of probability measures on compact metric spaces and in particular on Riemannian manifolds by atomic or empirical ones is a classical task in approximation and complexity theory with a wide range of applications. Instead of point measures we are concerned with the approximation by measures supported on Lipschitz curves. Special attention is paid to push-forward measures of Lebesgue measures on the unit interval by such curves. Using the discrepancy as distance between measures, we prove optimal approximation rates in terms of the curve’s length and Lipschitz constant. Having established the theoretical convergence rates, we are interested in the numerical minimization of the discrepancy between a given probability measure and the set of push-forward measures of Lebesgue measures on the unit interval by Lipschitz curves. We present numerical examples for measures on the 2- and 3-dimensional torus, the 2-sphere, the rotation group on $$\mathbb R^3$$ R 3 and the Grassmannian of all 2-dimensional linear subspaces of $${\mathbb {R}}^4$$ R 4 . Our algorithm of choice is a conjugate gradient method on these manifolds, which incorporates second-order information. For efficient gradient and Hessian evaluations within the algorithm, we approximate the given measures by truncated Fourier series and use fast Fourier transform techniques on these manifolds.

[1]  Alain Trouvé,et al.  Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.

[2]  M. Fornasier,et al.  Consistency of variational continuous-domain quantization via kinetic theory , 2011, 1112.1403.

[3]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[4]  Manuel Gräf,et al.  On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms , 2011, Numerische Mathematik.

[5]  Zoubin Ghahramani,et al.  Training generative neural networks via Maximum Mean Discrepancy optimization , 2015, UAI.

[6]  Pierre Weiss,et al.  Variable Density Sampling with Continuous Trajectories , 2014, SIAM J. Imaging Sci..

[7]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[8]  Dachun Yang,et al.  Sobolev Spaces on Metric Measure Spaces , 2014 .

[9]  Pierre Weiss,et al.  SPARKLING: variable‐density k‐space filling curves for accelerated T2*‐weighted MRI , 2019, Magnetic resonance in medicine.

[10]  J. Roe Elliptic Operators, Topology and Asymptotic Methods , 1988 .

[11]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[12]  Scuola Normale Superiore,et al.  Annali della Scuola normale superiore di Pisa, Classe di scienze , 1974 .

[13]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[14]  Nicolas Chauffert,et al.  A Projection Method on Measures Sets , 2017 .

[15]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[16]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[17]  Pierre Weiss,et al.  On the Generation of Sampling Schemes for Magnetic Resonance Imaging , 2016, SIAM J. Imaging Sci..

[18]  Pierre Weiss,et al.  Optimal Transport Approximation of 2-Dimensional Measures , 2018, SIAM J. Imaging Sci..

[19]  Ingo Steinwart,et al.  Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs , 2012 .

[20]  José Luis Romero,et al.  On Minimal Trajectories for Mobile Sampling of Bandlimited Fields , 2013, ArXiv.

[21]  Gabriele Steidl,et al.  Numerical Fourier Analysis , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[22]  J. Steele Growth Rates of Euclidean Minimal Spanning Trees With Power Weighted Edges , 1988 .

[23]  Josef Dick,et al.  Spectral Decomposition of Discrepancy Kernels on the Euclidean Ball, the Special Orthogonal Group, and the Grassmannian Manifold , 2019, Constructive Approximation.

[24]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[25]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[26]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[27]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[28]  D. Potts,et al.  Sampling Sets and Quadrature Formulae on the Rotation Group , 2009 .

[29]  Andriy Bondarenko,et al.  Well-Separated Spherical Designs , 2013, 1303.5991.

[30]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[31]  Anna Breger,et al.  Quasi Monte Carlo Integration and Kernel-Based Function Approximation on Grassmannians , 2016, 1605.09165.

[32]  Ergun Akleman,et al.  Hamiltonian cycle art: Surface covering wire sculptures and duotone surfaces , 2013, Comput. Graph..

[33]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[34]  Ian H. Sloan,et al.  Quadrature in Besov spaces on the Euclidean sphere , 2007, J. Complex..

[35]  C. Villani Topics in Optimal Transportation , 2003 .

[36]  Joachim Weickert,et al.  Dithering by Differences of Convex Functions , 2011, SIAM J. Imaging Sci..

[37]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[38]  Gabriel Peyré,et al.  Sample Complexity of Sinkhorn Divergences , 2018, AISTATS.

[39]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[40]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[41]  H. Triebel Theory of Function Spaces III , 2008 .

[42]  Grady B. Wright,et al.  Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..

[43]  Gerold Wagner,et al.  On averaging sets , 1991 .

[44]  Søren Hauberg,et al.  Principal Curves on Riemannian Manifolds , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  C. Choirat,et al.  Quadrature rules and distribution of points on manifolds , 2010, 1012.5409.

[46]  Julien Chevallier,et al.  Uniform decomposition of probability measures: quantization, clustering and rate of convergence , 2018, Journal of Applied Probability.

[47]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[48]  Christine Bachoc,et al.  Designs in Grassmannian Spaces and Lattices , 2002 .

[49]  H. Mhaskar,et al.  Approximate Quadrature Measures on Data-Defined Spaces , 2016, 1612.02368.

[50]  A. G. Constantine,et al.  Generalized Jacobi Polynomials as Spherical Functions of the Grassmann Manifold , 1974 .

[51]  On elliptic operators in , 1980 .

[52]  T. Coulhon,et al.  Sobolev algebras on Lie groups and Riemannian manifolds , 2001 .

[53]  Ross T. Whitaker,et al.  Regularization-free principal curve estimation , 2013, J. Mach. Learn. Res..

[54]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[55]  Marco Cuturi,et al.  Computational Optimal Transport , 2019 .

[56]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[57]  Craig S. Kaplan TSP Art , 2005 .

[58]  Jonas Kahn,et al.  Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure , 2018, Numerische Mathematik.

[59]  Roe Elliptic operators, topology and asymptotic methods , 1990 .

[60]  Zhonggui Chen,et al.  Line drawing for 3D printing , 2017, Comput. Graph..

[61]  Michael Gnewuch,et al.  Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces , 2012, J. Complex..

[62]  J. Michael Steele,et al.  Worst-Case Growth Rates of Some Classical Problems of Combinatorial Optimization , 1989, SIAM J. Comput..

[63]  Manuel Gräf,et al.  A unified approach to scattered data approximation on $\mathbb{S}^{\bf 3}$ and SO(3) , 2012, Adv. Comput. Math..

[64]  T. Hastie,et al.  Principal Curves , 2007 .

[65]  Christine Bachoc,et al.  Codes and designs in Grassmannian spaces , 2004, Discret. Math..

[66]  Benoît R. Kloeckner Approximation by finitely supported measures , 2010, 1003.1035.

[67]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Electrostatic Halftoning Electrostatic Halftoning , 2022 .

[68]  Andrea Braides Γ-convergence for beginners , 2002 .

[69]  M. Gräf Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian Manifolds , 2013 .

[70]  Aidan Roy,et al.  Bounds for codes and designs in complex subspaces , 2008, 0806.2317.

[71]  Andrew R. Teel,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 2022 .

[72]  Klaus-Jürgen Förster,et al.  On estimates for the weights in Gaussian quadrature in the ultraspherical case , 1990 .

[73]  W. Stuetzle,et al.  Extremal properties of principal curves in the plane , 1996 .

[74]  H. N. Mhaskar,et al.  Eignets for function approximation on manifolds , 2009, ArXiv.

[75]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[76]  Gerold Wagner,et al.  On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .

[77]  Christine Bachoc Linear programming bounds for codes in grassmannian spaces , 2006, IEEE Transactions on Information Theory.

[78]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[79]  Hee-Seok Oh,et al.  Spherical Principal Curves , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[81]  M. Ehler,et al.  Cubatures and designs in unions of Grassmannians , 2014 .

[82]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[83]  Hrushikesh Narhar Mhaskar,et al.  Marcinkiewicz-Zygmund measures on manifolds , 2010, J. Complex..

[84]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[85]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[86]  Gabriele Steidl,et al.  Quadrature Errors, Discrepancies, and Their Relations to Halftoning on the Torus and the Sphere , 2012, SIAM J. Sci. Comput..

[87]  Fredrik Meyer,et al.  Representation theory , 2015 .

[88]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[89]  Joachim Weickert,et al.  Fast electrostatic halftoning , 2011, Journal of Real-Time Image Processing.

[90]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[91]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  Giacomo Gigante,et al.  Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces , 2015, Discrete & Computational Geometry.

[93]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.