Using Domain Knowledge for Feature Selection in Neural Network Solution of the Inverse Problem of Magnetotelluric Sounding

[1]  E. A. Obornev,et al.  The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics , 2017, Izvestiya, Physics of the Solid Earth.

[2]  M. Gevrey,et al.  Review and comparison of methods to study the contribution of variables in artificial neural network models , 2003 .

[3]  Deron Liang,et al.  Novel feature selection methods to financial distress prediction , 2014, Expert Syst. Appl..

[4]  Seyed Mohammad Mirjalili,et al.  Whale optimization approaches for wrapper feature selection , 2018, Appl. Soft Comput..

[5]  Sergey Dolenko,et al.  Adding Noise During Training as a Method to Increase Resilience of Neural Network Solution of Inverse Problems: Test on the Data of Magnetotelluric Sounding Problem , 2017 .

[6]  Héctor F. Satizábal,et al.  Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks , 2007, ICANN.

[7]  Danilo Comminiello,et al.  Group sparse regularization for deep neural networks , 2016, Neurocomputing.

[8]  E. A. Obornev,et al.  An Algorithm for Solving Inverse Geoelectrics Problems Based on the Neural Network Approximation , 2018, Numerical Analysis and Applications.

[9]  Xiaoming Xu,et al.  A hybrid genetic algorithm for feature selection wrapper based on mutual information , 2007, Pattern Recognit. Lett..

[10]  Vladimir I. Dmitriev,et al.  Models and Methods of Magnetotellurics , 2008 .

[11]  Sergey Dolenko,et al.  Comparative Analysis of Residual Minimization and Artificial Neural Networks as Methods of Solving Inverse Problems: Test on Model Data , 2016, BICA 2016.

[12]  Xin Yao,et al.  A Survey on Evolutionary Computation Approaches to Feature Selection , 2016, IEEE Transactions on Evolutionary Computation.

[13]  Wei Liu,et al.  Nonlinear inversion for magnetotelluric sounding based on deep belief network , 2019 .

[14]  Behrooz Oskooi,et al.  Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks , 2014, Acta Geophysica.

[15]  T. Mogi,et al.  ANN reconstruction of geoelectrical parameters of the Minou fault zone by scalar CSAMT data , 2002 .

[16]  Igor Isaev,et al.  Increase of the Resistance to Noise in Data for Neural Network Solution of the Inverse Problem of Magnetotellurics with Group Determination of Parameters , 2016, ICANN.

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  Sergey Dolenko,et al.  Neural Network Recognition of the Type of Parameterization Scheme for Magnetotelluric Data , 2018, Advances in Neural Computation, Machine Learning, and Cognitive Research II.

[19]  Graham Heinson,et al.  Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks , 2019, Comput. Geosci..

[20]  V. Spichak,et al.  Artificial neural network inversion of magnetotelluric data in terms of three‐dimensional earth macroparameters , 2000 .

[21]  S. Sitharama Iyengar,et al.  Data-Driven Techniques in Disaster Information Management , 2017, ACM Comput. Surv..

[22]  I. G. Persiantsev,et al.  Study of Influence of Parameter Grouping on the Error of Neural Network Solution of the Inverse Problem of Electrical Prospecting , 2013, EANN.

[23]  C. Manoj,et al.  The application of artificial neural networks to magnetotelluric time-series analysis , 2003 .

[24]  Patrick Gallinari,et al.  Variable selection with neural networks , 1996, Neurocomputing.

[25]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[26]  Kewei Cheng,et al.  Feature Selection , 2016, ACM Comput. Surv..

[27]  Antanas Verikas,et al.  Feature selection with neural networks , 2002, Pattern Recognit. Lett..