An Active Transposable Element, Herves, From the African Malaria Mosquito Anopheles gambiae Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AY462096.

Transposable elements have proven to be invaluable tools for genetically manipulating a wide variety of plants, animals, and microbes. Some have suggested that they could be used to spread desirable genes, such as refractoriness to Plasmodium infection, through target populations of Anopheles gambiae, thereby disabling the mosquito's ability to transmit malaria. To achieve this, a transposon must remain mobile and intact after the initial introduction into the genome. Endogenous, active class II transposable elements from An. gambiae have not been exploited as gene vectors/drivers because none have been isolated. We report the discovery of an active class II transposable element, Herves, from the mosquito An. gambiae. Herves is a member of a distinct subfamily of hAT elements that includes the hopper-we element from Bactrocera dorsalis and B. cucurbitae. Herves was transpositionally active in mobility assays performed in Drosophila melanogaster S2 cells and developing embryos and was used as a germ-line transformation vector in D. melanogaster. Herves displays an altered target-site preference from the distantly related hAT elements, Hermes and hobo. Herves is also present in An. arabiensis and An. merus with copy numbers similar to that found in An. gambiae. Preliminary data from an East African population are consistent with the element being transpositionally active in mosquitoes.

[1]  S. Whyard,et al.  TheHermes element fromMusca domestica can transpose in four families of cyclorrhaphan flies , 2005, Genetica.

[2]  Fred Dyda,et al.  Transposition of hAT elements links transposable elements and V(D)J recombination , 2004, Nature.

[3]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[4]  D. O’brochta,et al.  Ectopic Expression of a Cecropin Transgene in the Human Malaria Vector Mosquito Anopheles gambiae (Diptera: Culicidae): Effects on Susceptibility to Plasmodium , 2004, Journal of medical entomology.

[5]  A. Handler Isolation and Analysis of a New hopper hAT Transposon from the Bactrocera Dorsalis White Eye Strain , 2003, Genetica.

[6]  H. Robertson,et al.  Tsessebe, Topi and Tiang: three distinct Tc1‐like transposable elements in the malaria vector, Anopheles gambiae , 2004, Genetica.

[7]  A. James,et al.  Gene vector and transposable element behavior in mosquitoes , 2003, Journal of Experimental Biology.

[8]  D. O’brochta,et al.  Post-integration behavior of a Mos1 mariner gene vector in Aedes aegypti. , 2003, Insect biochemistry and molecular biology.

[9]  C. Sim,et al.  Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences , 2003, Molecular Genetics and Genomics.

[10]  J. Krzywinski,et al.  P elements are found in the genomes of nematoceran insects of the genus Anopheles. , 2003, Insect biochemistry and molecular biology.

[11]  D. O’brochta,et al.  Patterns of Hermes transposition in Drosophila melanogaster , 2003, Molecular Genetics and Genomics.

[12]  A. Ghosh,et al.  Bee Venom Phospholipase Inhibits Malaria Parasite Development in Transgenic Mosquitoes* , 2002, The Journal of Biological Chemistry.

[13]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[14]  A. Handler,et al.  Germ‐line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient , 2002, Insect molecular biology.

[15]  G. Lycett,et al.  Medicine: Anti-malarial mosquitoes? , 2002, Nature.

[16]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[17]  N. Besansky,et al.  Structure and evolution of mtanga, a retrotransposon actively expressed on the Y chromosome of the African malaria vector Anopheles gambiae. , 2002, Molecular biology and evolution.

[18]  Elena R. Lozovsky,et al.  Unexpected stability of mariner transgenes in Drosophila. , 2002, Genetics.

[19]  H. Robertson Evolution of DNA Transposons in Eukaryotes , 2002 .

[20]  Xiao-Fan Wang,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002 .

[21]  T. K. Stevens,et al.  Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element , 2001, Insect molecular biology.

[22]  A. Raikhel,et al.  Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. , 2001, Insect biochemistry and molecular biology.

[23]  D. O’brochta,et al.  Stable, Germ-Line Transformation of Culex quinquefasciatus (Diptera: Culicidae) , 2001, Journal of medical entomology.

[24]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[25]  G. Lithwick,et al.  Structure and evolution of the hAT transposon superfamily. , 2001, Genetics.

[26]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[27]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[28]  Andrea Crisanti,et al.  Stable germline transformation of the malaria mosquito Anopheles stephensi , 2000, Nature.

[29]  A. James,et al.  Moose, a new family of LTR‐retrotransposons in the mosquito Anopheles gambiae , 1999, Insect molecular biology.

[30]  A. Ciccodicola,et al.  A novel pseudoautosomal human gene encodes a putative protein similar to Ac-like transposases. , 1999, Human molecular genetics.

[31]  A. James,et al.  Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. James,et al.  Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Hawley,et al.  The effective population size of Anopheles gambiae in Kenya: implications for population structure. , 1998, Molecular biology and evolution.

[34]  P. Romans,et al.  Ikirara, a novel transposon family from the malaria vector mosquito, Anopheles gambiae , 1998, Insect molecular biology.

[35]  D. Hartl,et al.  Reduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site? , 1996, Genetics.

[36]  D. O’brochta,et al.  Hermes, a functional non-Drosophilid insect gene vector from Musca domestica. , 1996, Genetics.

[37]  D. O’brochta,et al.  The Australian bushfly Musca vetustissima contains a sequence related to transposons of the hobo, Ac and Tam3 family. , 1995, Gene.

[38]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[39]  H. Robertson,et al.  Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods , 1993, Insect molecular biology.

[40]  Charles E. Taylor,et al.  Effective population size and persistence of Anopheles arabiensis during the dry season in West Africa , 1993, Medical and veterinary entomology.

[41]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[42]  W. Gelbart,et al.  Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, activator, and Tam3 , 1991, Cell.

[43]  I. Boussy,et al.  Distribution of hobo transposable elements in the genus Drosophila. , 1990, Molecular biology and evolution.

[44]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[45]  M. G. Kidwell,et al.  Evidence for horizontal transmission of the P transposable element between Drosophila species. , 1990, Genetics.

[46]  Eugene W. Myers,et al.  Basic local alignment search tool. Journal of Molecular Biology , 1990 .

[47]  D. Anxolabéhère,et al.  Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. , 1988, Molecular biology and evolution.

[48]  P. Kantoff,et al.  Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. , 1987, Science.

[49]  J. Brookfield,et al.  Transposable Elements in Mendelian Populations. III. Statistical Results. , 1983, Genetics.

[50]  C. Langley,et al.  Transposable Elements in Mendelian Populations. II. Distribution of Three COPIA-like Elements in a Natural Population of DROSOPHILA MELANOGASTER. , 1983, Genetics.

[51]  J. Brookfield,et al.  Transposable elements in mendelian populations. I. A theory. , 1983, Genetics.

[52]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[53]  I. Schneider,et al.  Cell lines derived from late embryonic stages of Drosophila melanogaster. , 1972, Journal of embryology and experimental morphology.