Analyzing a Bose polaron across resonant interactions

Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting with a quantum reservoir. Here we expand the experimental analysis by disentangling the effects of trap inhomogeneities and the many-body continuum in one of these experiments. This makes it possible to extract the energy of the polaron at a well-defined density as a function of the interaction strength. Comparisons with quantum Monte Carlo as well as diagrammatic calculations show good agreement, and provide a more detailed picture of the polaron properties at stronger interactions than previously possible. Moreover, we develop a semiclassical theory for the motional dynamics and three-body loss of the polarons, which partly explains a previously unresolved discrepancy between theory and experimental observations for repulsive interactions. Finally, we utilize quantum Monte Carlo calculations to demonstrate that the findings reported in the two experiments are consistent with each other.

[1]  M. Salmhofer,et al.  Real-space dynamics of attractive and repulsive polarons in Bose-Einstein condensates , 2018, Physical Review A.

[2]  K. K. Nielsen,et al.  Critical slowdown of non-equilibrium polaron dynamics , 2018, New Journal of Physics.

[3]  T. Pohl,et al.  Ground-state properties of dipolar Bose polarons , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[4]  T. Pohl,et al.  Bipolarons in a Bose-Einstein Condensate. , 2018, Physical review letters.

[5]  M. Lewenstein,et al.  Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate , 2018, Physical Review A.

[6]  T. Pfau,et al.  Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures. , 2018, Physical review letters.

[7]  A. Camacho-Guardian,et al.  Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate , 2017, Physical Review X.

[8]  A. Volosniev,et al.  Coalescence of Two Impurities in a Trapped One-dimensional Bose Gas. , 2017, Physical review letters.

[9]  A. Widera,et al.  Prethermalization in the cooling dynamics of an impurity in a Bose-Einstein condensate , 2017, 1708.09242.

[10]  M. Lewenstein,et al.  Bose Polarons at Finite Temperature and Strong Coupling. , 2017, Physical review letters.

[11]  F B Dunning,et al.  Creation of Rydberg Polarons in a Bose Gas. , 2017, Physical review letters.

[12]  Shuhei M. Yoshida,et al.  Universality of an impurity in a Bose-Einstein condensate , 2017, 1710.02968.

[13]  S. Yoshida,et al.  Theory of excitation of Rydberg polarons in an atomic quantum gas , 2017, 1709.01838.

[14]  Robert P. Smith,et al.  Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas. , 2017, Physical review letters.

[15]  J. Arlt,et al.  Finite-temperature behavior of the Bose polaron , 2017, 1708.09172.

[16]  H. Zhai,et al.  Visualizing the Efimov Correlation in Bose Polarons. , 2017, Physical review letters.

[17]  S. Giorgini,et al.  Quantum Monte Carlo study of the Bose-polaron problem in a one-dimensional gas with contact interactions , 2016, 1612.01322.

[18]  A. Recati,et al.  Repulsive Fermi Polarons in a Resonant Mixture of Ultracold ^{6}Li Atoms. , 2016, Physical review letters.

[19]  S. Giorgini,et al.  Bose polaron problem: Effect of mass imbalance on binding energy , 2016, 1610.02203.

[20]  J. Arlt,et al.  Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate. , 2016, Physical review letters.

[21]  Michael Knap,et al.  Ultrafast many-body interferometry of impurities coupled to a Fermi sea , 2016, Science.

[22]  E. Demler,et al.  Quantum Dynamics of Ultracold Bose Polarons. , 2016, Physical review letters.

[23]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[24]  E. Cornell,et al.  Bose Polarons in the Strongly Interacting Regime. , 2016, Physical review letters.

[25]  S. Giorgini,et al.  Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods , 2015, 1507.07427.

[26]  M. Parish,et al.  Impurity in a Bose-Einstein Condensate and the Efimov Effect. , 2015, Physical review letters.

[27]  G. Bruun,et al.  Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate. , 2015, Physical review letters.

[28]  F. Grusdt,et al.  Renormalization group approach to the Fröhlich polaron model: application to impurity-BEC problem , 2014, Scientific Reports.

[29]  J. Devreese,et al.  Diagrammatic Monte Carlo study of the acoustic and the Bose–Einstein condensate polaron , 2014, 1406.6506.

[30]  S. Sarma,et al.  Variational study of polarons in Bose-Einstein condensates , 2014, 1404.4054.

[31]  Ben Kain,et al.  Polarons in a dipolar condensate , 2014, 1401.2961.

[32]  P. Massignan,et al.  Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases , 2013, Reports on progress in physics. Physical Society.

[33]  E. Cornell,et al.  Universal dynamics of a degenerate unitary Bose gas , 2013, Nature Physics.

[34]  E. Timmermans,et al.  Two polaron flavors of the Bose-Einstein condensate impurity , 2013 .

[35]  R. Schmidt,et al.  Field-theoretical study of the Bose polaron , 2013, 1308.3457.

[36]  E. Cornell,et al.  Measurements of Tan's contact in an atomic Bose-Einstein condensate. , 2012, Physical review letters.

[37]  M. Köhl,et al.  Attractive and repulsive Fermi polarons in two dimensions , 2012, Nature.

[38]  P. Massignan,et al.  Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture , 2011, Nature.

[39]  A. Zenesini,et al.  Efimov Resonances in Ultracold Quantum Gases , 2011, 1108.1909.

[40]  P. Massignan,et al.  Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases , 2011, 1102.0121.

[41]  E. Braaten,et al.  Short-time operator product expansion for rf spectroscopy of a strongly interacting Fermi gas. , 2010, Physical review letters.

[42]  J. Devreese,et al.  Feynman path-integral treatment of the BEC-impurity polaron , 2009, 0906.4455.

[43]  Cheng-Hsun Wu,et al.  Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. , 2009, Physical review letters.

[44]  W. Bao,et al.  Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling , 2008, 0801.4000.

[45]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[46]  F. Cucchietti,et al.  Strong-coupling polarons in dilute gas Bose-Einstein condensates. , 2006, Physical review letters.

[47]  D. Blume,et al.  Interaction-induced localization of an impurity in a trapped Bose-Einstein condensate , 2005, cond-mat/0512031.

[48]  Z. Hussain,et al.  Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites , 2005, Nature.

[49]  Eric Braaten,et al.  Universality in few‐body systems with large scattering length , 2004, nucl-th/0502080.

[50]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[51]  H. Kambara,et al.  Determination of impurities in gases by atmospheric pressure ionization mass spectrometry , 1977 .

[52]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .