Cooperative binding of tetrameric p53 to DNA.

[1]  T. Lohman,et al.  Ion effects on ligand-nucleic acid interactions. , 1976, Journal of molecular biology.

[2]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[3]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[4]  S. Fields,et al.  Presence of a potent transcription activating sequence in the p53 protein. , 1990, Science.

[5]  M. Record,et al.  Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA. , 1991, Methods in enzymology.

[6]  J. Bartek,et al.  Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. , 1992, Journal of cell science.

[7]  K. Kinzler,et al.  Definition of a consensus binding site for p53 , 1992, Nature Genetics.

[8]  J. Shay,et al.  A transcriptionally active DNA-binding site for human p53 protein complexes , 1992, Molecular and cellular biology.

[9]  Andrew Travers,et al.  DNA-Protein Interactions , 1993, Springer Netherlands.

[10]  V. LeTilly,et al.  Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding. , 1993, Biochemistry.

[11]  K. Kinzler,et al.  Sequence-specific transcriptional activation is essential for growth suppression by p53. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[13]  A. Gronenborn,et al.  High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. , 1994, Science.

[14]  C. Arrowsmith,et al.  Solution structure of the tetrameric minimum transforming domain of p53 , 1995, Nature Structural Biology.

[15]  R Montesano,et al.  Database of p53 gene somatic mutations in human tumors and cell lines. , 1994, Nucleic acids research.

[16]  K. Kinzler,et al.  p53 tagged sites from human genomic DNA. , 1994, Human molecular genetics.

[17]  C. Arrowsmith,et al.  Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. , 1995, Biochemistry.

[18]  P. Tegtmeyer,et al.  Interaction of p53 with its consensus DNA-binding site , 1995, Molecular and cellular biology.

[19]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[20]  A. Gronenborn,et al.  Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Pavletich,et al.  Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms , 1995, Science.

[22]  Thierry Soussi,et al.  Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation , 1996, Nucleic Acids Res..

[23]  R. J. Reedstrom,et al.  Characterization of charge change super-repressor mutants of trp repressor: effects on oligomerization conformation, ligation and stability. , 1996, Journal of molecular biology.

[24]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[25]  V. Zhurkin,et al.  Architectural Accommodation in the Complex of Four p53 DNA Binding Domain Peptides with the p21/waf1/cip1 DNA Response Element* , 1997, The Journal of Biological Chemistry.

[26]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[27]  E. Appella,et al.  DNA Bending Is Essential for the Site-specific Recognition of DNA Response Elements by the DNA Binding Domain of the Tumor Suppressor Protein p53* , 1997, The Journal of Biological Chemistry.

[28]  C A Royer,et al.  Affinity and specificity of trp repressor-DNA interactions studied with fluorescent oligonucleotides. , 1997, Journal of molecular biology.

[29]  E. Stavridi,et al.  Hydrophobic side‐chain size is a determinant of the three‐dimensional structure of the p53 oligomerization domain , 1997, The EMBO journal.

[30]  A. Fersht,et al.  Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain , 1998, The EMBO journal.

[31]  K. McLure,et al.  How p53 binds DNA as a tetramer , 1998, The EMBO journal.

[32]  Jeffrey A. Lefstin,et al.  Allosteric effects of DNA on transcriptional regulators , 1998, Nature.

[33]  K. Roemer Mutant p53: Gain-of-Function Oncoproteins and Wild-Type p53 Inactivators , 1999, Biological chemistry.

[34]  A. Schepartz,et al.  DNA specificity enhanced by sequential binding of protein monomers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Alan R. Fersht,et al.  Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53 , 1999, Nature Structural Biology.

[36]  V. Zhurkin,et al.  p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. May,et al.  Twenty years of p53 research: structural and functional aspects of the p53 protein , 1999, Oncogene.

[38]  K. McLure,et al.  p53 DNA binding can be modulated by factors that alter the conformational equilibrium , 1999, The EMBO journal.

[39]  Jennifer J. Kohler,et al.  Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization. , 2001, Biochemistry.

[40]  C. Klein,et al.  NMR Spectroscopy Reveals the Solution Dimerization Interface of p53 Core Domains Bound to Their Consensus DNA* , 2001, The Journal of Biological Chemistry.

[41]  P. Balagurumoorthy,et al.  Conformation and rigidity of DNA microcircles containing waf1 response element for p53 regulatory protein. , 2001, Journal of molecular biology.

[42]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[43]  A. Fersht,et al.  Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. , 2002, Journal of molecular biology.

[44]  Patrick W. Lee,et al.  Biogenesis of p53 Involves Cotranslational Dimerization of Monomers and Posttranslational Dimerization of Dimers , 2002, The Journal of Biological Chemistry.