Metric-topological interaction model of collective behavior

[1]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[2]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[3]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[4]  Jüri Allik,et al.  Interactions between area and numerosity , 1988, Psychological research.

[5]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .

[6]  Jerome O. Nriagu,et al.  A global assessment of natural sources of atmospheric trace metals , 1989, Nature.

[7]  A. Huth,et al.  The simulation of the movement of fish schools , 1992 .

[8]  Hauke Reuter,et al.  SELFORGANIZATION OF FISH SCHOOLS : AN OBJECT-ORIENTED MODEL , 1994 .

[9]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[10]  Dirk Helbing,et al.  Modelling the evolution of human trail systems , 1997, Nature.

[11]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[12]  T. Vicsek,et al.  Collective behavior of interacting self-propelled particles , 2000, cond-mat/0611742.

[13]  A. Libchaber,et al.  Particle diffusion in a quasi-two-dimensional bacterial bath. , 2000, Physical review letters.

[14]  H. Chaté,et al.  Active and passive particles: modeling beads in a bacterial bath. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Chaté,et al.  Comment on "particle diffusion in a quasi-two-dimensional bacterial bath". , 2001, Physical review letters.

[16]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[17]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[18]  Y. Tu,et al.  Moving and staying together without a leader , 2003, cond-mat/0401257.

[19]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[20]  Maximino Aldana,et al.  Intermittency and clustering in a system of self-driven particles. , 2004, Physical review letters.

[21]  J. Parrish Layering with depth in a heterospecific fish aggregation , 1989, Environmental Biology of Fishes.

[22]  E. Spelke,et al.  Language and Conceptual Development series Core systems of number , 2004 .

[23]  H. Chaté,et al.  Onset of collective and cohesive motion. , 2004, Physical review letters.

[24]  Miha Mraz,et al.  Simulating flocks on the wing: the fuzzy approach. , 2005, Journal of Theoretical Biology.

[25]  C. Hemelrijk,et al.  Density distribution and size sorting in fish schools: an individual-based model , 2005 .

[26]  D. Sumpter The principles of collective animal behaviour , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Joseph J. Hale,et al.  From Disorder to Order in Marching Locusts , 2006, Science.

[28]  C. Hemelrijk,et al.  Self-Organized Shape and Frontal Density of Fish Schools , 2008 .

[29]  Irene Giardina,et al.  Collective behavior in animal groups: Theoretical models and empirical studies , 2008, HFSP journal.

[30]  G. Parisi,et al.  Empirical investigation of starling flocks: a benchmark study in collective animal behaviour , 2008, Animal Behaviour.

[31]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[32]  Marco Dadda,et al.  Do fish count? Spontaneous discrimination of quantity in female mosquitofish , 2008, Animal Cognition.

[33]  Luigi Fortuna,et al.  Synchronization in Networks of Mobile Agents , 2009 .

[34]  V. M. Kenkre,et al.  Phase transitions induced by complex nonlinear noise in a system of self-propelled agents. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  N. Makris,et al.  Critical Population Density Triggers Rapid Formation of Vast Oceanic Fish Shoals , 2009, Science.

[36]  T. Vicsek,et al.  Transitions in a self-propelled-particles model with coupling of accelerations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  C. Hemelrijk,et al.  Self-organised complex aerial displays of thousands of starlings: a model , 2009, 0908.2677.

[38]  Dirk Helbing,et al.  Collective Information Processing and Pattern Formation in Swarms, Flocks, and Crowds , 2009, Top. Cogn. Sci..

[39]  Marco Dadda,et al.  Use of Number by Fish , 2009, PloS one.

[40]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[41]  Daniel W Franks,et al.  Limited interactions in flocks: relating model simulations to empirical data , 2011, Journal of The Royal Society Interface.

[42]  H. Chaté,et al.  Relevance of metric-free interactions in flocking phenomena. , 2010, Physical review letters.

[43]  Daniel W Franks,et al.  Making noise: emergent stochasticity in collective motion. , 2010, Journal of theoretical biology.

[44]  D. Sumpter Collective Animal Behavior , 2010 .