A Numerical Study of the Xu Polynomial Interpolation Formula in Two Variables

In his paper ``Lagrange interpolation on Chebyshev points of two variables'' (J. Approx. Theor. 87, 220–238, 1996), Y. Xu proposed a set of Chebyshev like points for polynomial interpolation in the square [−1,1]2, and derived a compact form of the corresponding Lagrange interpolation formula. We investigate computational aspects of the Xu polynomial interpolation formula like numerical stability and efficiency, the behavior of the Lebesgue constant, and its application to the reconstruction of various test functions.

[1]  Len Bos,et al.  On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .

[2]  P. Pichler Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon , 2004 .

[3]  L Spaanenburg,et al.  ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS , 2001 .

[4]  Ping Tak Peter Tang Some Software Implementations of the Functions Sine and Cosine , 1990 .

[5]  Marco Vianello,et al.  Bivariate polynomial interpolation on the square at new nodal sets , 2005, Appl. Math. Comput..

[6]  Moshe Dubiner The theory of multi-dimensional polynomial approximation , 1995 .

[7]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[8]  Siegfried Selberherr,et al.  Simulation of Semiconductor Processes and Devices 2007 , 2007 .

[9]  Jürgen Herzberger Inclusion methods for nonlinear problems : with applications in engineering, economics and physics , 2003 .

[10]  Tomas Sauer,et al.  Computational aspects of multivariate polynomial interpolation , 1995, Adv. Comput. Math..

[11]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[12]  Yuan Xu Polynomial Interpolation on the Unit Sphere and on the Unit Ball , 2004, Adv. Comput. Math..

[13]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[14]  Yuan Xu,et al.  Lagrange Interpolation on Chebyshev Points of Two Variables , 1996 .

[15]  L. Reichel Newton interpolation at Leja points , 1990 .

[16]  Yuan Xu,et al.  Gaussian cubature and bivariate polynomial interpolation , 1992 .

[17]  T. N. L. Patterson,et al.  Construction of Algebraic Cubature Rules Using Polynomial Ideal Theory , 1978 .

[18]  H. Tal-Ezer High Degree Polynomial Interpolation in Newton Form , 1991, SIAM J. Sci. Comput..