Microbiome-wide association studies link dynamic microbial consortia to disease

[1]  Rob Knight,et al.  From Sample to Multi-Omics Conclusions in under 48 Hours , 2016, mSystems.

[2]  Sean M. Kearney,et al.  Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles , 2016, Alimentary pharmacology & therapeutics.

[3]  S. Hazen,et al.  Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk , 2016, Cell.

[4]  D. Wishart Emerging applications of metabolomics in drug discovery and precision medicine , 2016, Nature Reviews Drug Discovery.

[5]  A. Margolles,et al.  Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health , 2016, Front. Microbiol..

[6]  Amnon Amir,et al.  Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer , 2016, Nature Medicine.

[7]  Casey M. Theriot,et al.  Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation , 2016, mSystems.

[8]  Thomas D Young,et al.  Tools for the Microbiome: Nano and Beyond. , 2015, ACS nano.

[9]  Barbara A. Bailey,et al.  Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome , 2015, The ISME Journal.

[10]  Hermie J M Harmsen,et al.  The Human Gut Microbiota. , 2016, Advances in experimental medicine and biology.

[11]  C. Huttenhower,et al.  The microbiome quality control project: baseline study design and future directions , 2015, Genome Biology.

[12]  Jun Wang,et al.  Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota , 2015, Nature.

[13]  Jianxin Shi,et al.  Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies , 2015, Cancer Epidemiology, Biomarkers & Prevention.

[14]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[15]  Marcus E. Raichle,et al.  Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development , 2015, Proceedings of the National Academy of Sciences.

[16]  Yan He,et al.  Dysbiosis of Gut Microbiota With Reduced Trimethylamine‐N‐Oxide Level in Patients With Large‐Artery Atherosclerotic Stroke or Transient Ischemic Attack , 2015, Journal of the American Heart Association.

[17]  Eric Z. Chen,et al.  Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. , 2015, Cell host & microbe.

[18]  Ole N Jensen,et al.  The human oral metaproteome reveals potential biomarkers for caries disease , 2015, Proteomics.

[19]  Pieter C Dorrestein,et al.  Illuminating the dark matter in metabolomics , 2015, Proceedings of the National Academy of Sciences.

[20]  Amnon Amir,et al.  Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. , 2015, Cell host & microbe.

[21]  Eran Segal,et al.  Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples , 2015, Science.

[22]  Christine L. Sun,et al.  Temporal and spatial variation of the human microbiota during pregnancy , 2015, Proceedings of the National Academy of Sciences.

[23]  Qiang Feng,et al.  The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment , 2015, Nature Medicine.

[24]  M. Fischbach,et al.  Small molecules from the human microbiota , 2015, Science.

[25]  Baochen Shi,et al.  Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis , 2015, Science Translational Medicine.

[26]  Li Li,et al.  A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat , 2015, BMC Genomics.

[27]  P. Ashton,et al.  Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella , 2015, Genome Biology.

[28]  Rob Knight,et al.  Analysis of composition of microbiomes: a novel method for studying microbial composition , 2015, Microbial ecology in health and disease.

[29]  Peer Bork,et al.  Determinants of community structure in the global plankton interactome , 2015, Science.

[30]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[31]  Katherine H. Huang,et al.  Identifying personal microbiomes using metagenomic codes , 2015, Proceedings of the National Academy of Sciences.

[32]  Sophie J. Weiss,et al.  Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection , 2015, Microbiome.

[33]  E. Pekkonen,et al.  Gut microbiota are related to Parkinson's disease and clinical phenotype , 2015, Movement disorders : official journal of the Movement Disorder Society.

[34]  Tommi Vatanen,et al.  The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. , 2015, Cell host & microbe.

[35]  J. Gilbert,et al.  Predicting ecosystem emergent properties at multiple scales. , 2015, Environmental microbiology reports.

[36]  N. Reo,et al.  Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. , 2015, FEMS microbiology ecology.

[37]  S. Hazen,et al.  Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease , 2015, Circulation research.

[38]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[39]  James A. Foster,et al.  Network analysis suggests a potentially ‘evil' alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities , 2014, Scientific Reports.

[40]  Casey M. Theriot,et al.  Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract , 2014, Infection and Immunity.

[41]  Rob Knight,et al.  Temporal variability is a personalized feature of the human microbiome , 2014, Genome Biology.

[42]  R. Knight,et al.  Meta‐analyses of human gut microbes associated with obesity and IBD , 2014, FEBS letters.

[43]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[44]  Jack A. Gilbert,et al.  Ecological Succession and Viability of Human-Associated Microbiota on Restroom Surfaces , 2014, Applied and Environmental Microbiology.

[45]  Angela C. Poole,et al.  Human Genetics Shape the Gut Microbiome , 2014, Cell.

[46]  Peter Cimermancic,et al.  A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics , 2014, Cell.

[47]  A. Butte,et al.  The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease , 2014, Cell host & microbe.

[48]  Rob Knight,et al.  Longitudinal analysis of microbial interaction between humans and the indoor environment , 2014, Science.

[49]  Jürg Bähler,et al.  Proportionality: A Valid Alternative to Correlation for Relative Data , 2014, bioRxiv.

[50]  M. Sekelja,et al.  Correlation between the human fecal microbiota and depression , 2014, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[51]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[52]  Jo Handelsman,et al.  Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity , 2014, mBio.

[53]  Bas E Dutilh,et al.  Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. , 2014, Omics : a journal of integrative biology.

[54]  P. Hylemon,et al.  Bile acids and the gut microbiome , 2014, Current opinion in gastroenterology.

[55]  P. Schloss,et al.  Dynamics and associations of microbial community types across the human body , 2014, Nature.

[56]  S. Hazen,et al.  Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. , 2014, European heart journal.

[57]  Rob Knight,et al.  Predictive modeling of gingivitis severity and susceptibility via oral microbiota , 2014, The ISME Journal.

[58]  Se Jin Song,et al.  The treatment-naive microbiome in new-onset Crohn's disease. , 2014, Cell host & microbe.

[59]  S. Kolida,et al.  Biological significance of short-chain fatty acid metabolism by the intestinal microbiome , 2014, Current opinion in clinical nutrition and metabolic care.

[60]  M. Redinbo,et al.  Understanding and modulating mammalian-microbial communication for improved human health. , 2014, Annual review of pharmacology and toxicology.

[61]  Jens Roat Kultima,et al.  Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota , 2015, Nature.

[62]  J. Petrosino,et al.  Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders , 2013, Cell.

[63]  Rob Knight,et al.  EMPeror: a tool for visualizing high-throughput microbial community data , 2013, GigaScience.

[64]  H. Li,et al.  Cometabolism of Microbes and Host: Implications for Drug Metabolism and Drug‐Induced Toxicity , 2013, Clinical pharmacology and therapeutics.

[65]  Sharon L. Grim,et al.  Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data , 2013, Methods in ecology and evolution.

[66]  R. Knight,et al.  Meta-analyses of studies of the human microbiota , 2013, Genome research.

[67]  C. Huttenhower,et al.  Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis , 2013, eLife.

[68]  J. Clemente,et al.  Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice , 2013, Science.

[69]  Mathieu Almeida,et al.  Dietary intervention impact on gut microbial gene richness , 2013, Nature.

[70]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[71]  P. Turnbaugh,et al.  Predicting and Manipulating Cardiac Drug Inactivation by the Human Gut Bacterium Eggerthella lenta , 2013, Science.

[72]  Joshua LaBaer,et al.  Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children , 2013, PloS one.

[73]  C. Manichanh,et al.  Anal gas evacuation and colonic microbiota in patients with flatulence: effect of diet , 2013, Gut.

[74]  P. Salamon,et al.  Bacteriophage adhering to mucus provide a non–host-derived immunity , 2013, Proceedings of the National Academy of Sciences.

[75]  S. Hazen,et al.  Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. , 2013, The New England journal of medicine.

[76]  A. Kostic,et al.  Exploring host-microbiota interactions in animal models and humans. , 2013, Genes & development.

[77]  J. Ilonen,et al.  Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without , 2013, Diabetes.

[78]  F. Bushman,et al.  Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis , 2013, Nature Medicine.

[79]  P. Turnbaugh,et al.  Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome , 2013, Cell.

[80]  Eleazar Eskin,et al.  Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. , 2013, Cell metabolism.

[81]  Brandi L. Cantarel,et al.  Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease , 2012, PloS one.

[82]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[83]  A. Viale,et al.  Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. , 2012, Arthritis and rheumatism.

[84]  Jonathan Friedman,et al.  Inferring Correlation Networks from Genomic Survey Data , 2012, PLoS Comput. Biol..

[85]  L. T. Angenent,et al.  Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy , 2012, Cell.

[86]  S. Mazmanian,et al.  Modeling an autism risk factor in mice leads to permanent immune dysregulation , 2012, Proceedings of the National Academy of Sciences.

[87]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[88]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[89]  B. Birren,et al.  Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. , 2012, Genome research.

[90]  J. Stockman,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2012 .

[91]  Jesse R. Zaneveld,et al.  Human-associated microbial signatures: examining their predictive value. , 2011, Cell host & microbe.

[92]  Rob Knight,et al.  Bayesian community-wide culture-independent microbial source tracking , 2011, Nature Methods.

[93]  R. Knight,et al.  Supervised classification of human microbiota. , 2011, FEMS microbiology reviews.

[94]  Peer Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[95]  Jennifer C. Drew,et al.  Toward defining the autoimmune microbiome for type 1 diabetes , 2011, The ISME Journal.

[96]  Rick L. Stevens,et al.  Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project , 2010, Standards in genomic sciences.

[97]  Anders F. Andersson,et al.  A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. , 2010, Gastroenterology.

[98]  Matthew R. Redinbo,et al.  Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme , 2010, Science.

[99]  Rob Knight,et al.  Human oral, gut, and plaque microbiota in patients with atherosclerosis , 2010, Proceedings of the National Academy of Sciences.

[100]  R. Knight,et al.  Microbial community resemblance methods differ in their ability to detect biologically relevant patterns , 2010, Nature Methods.

[101]  L. T. Angenent,et al.  Succession of microbial consortia in the developing infant gut microbiome , 2010, Proceedings of the National Academy of Sciences.

[102]  A. Abdulamir,et al.  The Impact of the Level of the Intestinal Short Chain Fatty Acids in Inflammatory Bowel Disease Patients Versus Healthy Subjects , 2010, The open biochemistry journal.

[103]  R. Ley,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2010, Science.

[104]  R. Knight,et al.  Forensic identification using skin bacterial communities , 2010, Proceedings of the National Academy of Sciences.

[105]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[106]  W. Rabsch,et al.  Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae , 2009, Infection and Immunity.

[107]  Ian D Wilson,et al.  Drugs, bugs, and personalized medicine: Pharmacometabonomics enters the ring , 2009, Proceedings of the National Academy of Sciences.

[108]  John C Lindon,et al.  Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism , 2009, Proceedings of the National Academy of Sciences.

[109]  J. Jansson,et al.  Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease , 2009, PloS one.

[110]  Mihai Pop,et al.  Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples , 2009, PLoS Comput. Biol..

[111]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[112]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[113]  J. Doré,et al.  Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients , 2008, Proceedings of the National Academy of Sciences.

[114]  R. Knight,et al.  Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers , 2008, Nucleic acids research.

[115]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[116]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[117]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[118]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[119]  Carmen Buchrieser,et al.  Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells , 2006, Science.

[120]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[121]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[122]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Daniel G. Lee,et al.  Pyocyanin Production by Pseudomonas aeruginosa Induces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo1 , 2005, The Journal of Immunology.

[124]  J. Lindon,et al.  'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. , 1999, Xenobiotica; the fate of foreign compounds in biological systems.

[125]  J. Cummings FERMENTATION IN THE HUMAN LARGE INTESTINE: EVIDENCE AND IMPLICATIONS FOR HEALTH , 1983, The Lancet.

[126]  P. Ms,et al.  THE SPECIALTY OF MEDICAL ADMINISTRATION. , 1965 .

[127]  Michael Harpham December , 1855, The Hospital.