Role of the INK4a Locus in Tumor Suppression and Cell Mortality

[1]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[2]  P. Pollock,et al.  Compilation of somatic mutations of the CDKN2 gene in human cancers: Non‐random distribution of base substitutions , 1996, Genes, chromosomes & cancer.

[3]  N. Hayward,et al.  Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma , 1996, Nature Genetics.

[4]  D. Louis,et al.  CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. , 1996, Cancer research.

[5]  C. D. Edwards,et al.  Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. , 1995, Cancer research.

[6]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[7]  B. Peters,et al.  Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds. , 1995, Oncogene.

[8]  C. Cole,et al.  The three transforming regions of SV40 T antigen are required for immortalization of primary mouse embryo fibroblasts. , 1995, Oncogene.

[9]  J. Olson,et al.  Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. , 1995, Cancer research.

[10]  G. Hannon,et al.  Deletion of the p16 and p15 genes in human bladder tumors. , 1995, Journal of the National Cancer Institute.

[11]  J. Herman,et al.  Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. , 1995, Cancer research.

[12]  R. Beart,et al.  Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. , 1995, Cancer research.

[13]  P. Goodfellow,et al.  Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. , 1995, The New England journal of medicine.

[14]  A M Goldstein,et al.  Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. , 1995, The New England journal of medicine.

[15]  N. Hayward,et al.  Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. , 1995, Human molecular genetics.

[16]  Kathleen R. Cho,et al.  Frequency of homozygous deletion at p16/CDKN2 in primary human tumours , 1995, Nature Genetics.

[17]  C. Busch,et al.  High frequency of chromosome 9p allelic loss and CDKN2 tumor suppressor gene alterations in squamous cell carcinoma of the bladder. , 1995, Journal of the National Cancer Institute.

[18]  M. Loda,et al.  CDC25 phosphatases as potential human oncogenes. , 1995, Science.

[19]  L. Cannon-Albright,et al.  Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. , 1995, Oncogene.

[20]  M. Serrano,et al.  A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma , 1995, Science.

[21]  M. Williamson,et al.  p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. , 1995, Human molecular genetics.

[22]  G. Hannon,et al.  Cloning and characterization of murine p16INK4a and p15INK4b genes. , 1995, Oncogene.

[23]  H. Koeffler,et al.  Role of the cyclin-dependent kinase inhibitors in the development of cancer. , 1995, Blood.

[24]  P. Stanley,et al.  WW6: an embryonic stem cell line with an inert genetic marker that can be traced in chimeras. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Hovig,et al.  Homozygous deletion frequency and expression levels of the CDKN2 gene in human sarcomas--relationship to amplification and mRNA levels of CDK4 and CCND1. , 1995, British Journal of Cancer.

[26]  S. Tavtigian,et al.  Complex structure and regulation of the P16 (MTS1) locus. , 1995, Cancer research.

[27]  C. D. Edwards,et al.  A novel p16INK4A transcript. , 1995, Cancer research.

[28]  R. Berger,et al.  A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. , 1995, Oncogene.

[29]  R. Weinberg,et al.  Growth suppression by p16ink4 requires functional retinoblastoma protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Sandkuijl,et al.  Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds , 1995, Nature Genetics.

[31]  S. Hanai,et al.  Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. , 1995, Cancer research.

[32]  B. Dynlacht,et al.  Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition , 1995, Nature.

[33]  J. Bartek,et al.  Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16 , 1995, Nature.

[34]  James M. Roberts,et al.  Inhibitors of mammalian G1 cyclin-dependent kinases. , 1995, Genes & development.

[35]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[36]  J. Bartek,et al.  Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity , 1995, Molecular and cellular biology.

[37]  David O. Morgan,et al.  Principles of CDK regulation , 1995, Nature.

[38]  C. D. Edwards,et al.  Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. , 1995, Cancer research.

[39]  R. DePinho,et al.  Inhibition of ras-induced proliferation and cellular transformation by p16INK4 , 1995, Science.

[40]  A. Okamoto,et al.  IS-12 Mutation and altered expression of P16^ in human cancer. , 1995 .

[41]  G. Reifenberger,et al.  CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. , 1994, Cancer research.

[42]  C. O'keefe,et al.  Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. , 1994, Genes & development.

[43]  M. Kripke,et al.  Ultraviolet radiation and immunology: something new under the sun--presidential address. , 1994, Cancer research.

[44]  T. Hunter,et al.  Cyclins and cancer II: Cyclin D and CDK inhibitors come of age , 1994, Cell.

[45]  A. Okamoto,et al.  Mutations and altered expression of p16INK4 in human cancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Housman,et al.  p53 status and the efficacy of cancer therapy in vivo. , 1994, Science.

[47]  W. Clark,et al.  Germline p16 mutations in familial melanoma , 1994, Nature Genetics.

[48]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[49]  A. Kamb A cell cycle regulator potentially involved in genesis of many tumour types , 1994 .

[50]  D. Carson,et al.  Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers , 1994, Nature.

[51]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[52]  C. Cordon-Cardo,et al.  Expression of the retinoblastoma protein is regulated in normal human tissues. , 1994, The American journal of pathology.

[53]  E. Harlow,et al.  Identification of G1 kinase activity for cdk6, a novel cyclin D partner , 1994, Molecular and cellular biology.

[54]  L. Bonetta,et al.  CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. , 1994, Oncogene.

[55]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[56]  C. Harris,et al.  Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Beach,et al.  Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. , 1993, Genes & development.

[58]  Hui Zhang,et al.  D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA , 1992, Cell.

[59]  Steven K. Hanks,et al.  Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins , 1992, Cell.

[60]  A. Berns,et al.  Requirement for a functional Rb-1 gene in murine development , 1992, Nature.

[61]  R. Weinberg,et al.  Effects of an Rb mutation in the mouse , 1992, Nature.

[62]  A. Bradley,et al.  Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis , 1992, Nature.

[63]  U. Rapp,et al.  Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. , 1992, Genes & development.

[64]  R. Bronson,et al.  Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene , 1991, Cell.

[65]  B. Futcher,et al.  Human D-type cyclin , 1991, Cell.

[66]  Richard A. Ashmun,et al.  Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle , 1991, Cell.

[67]  A. Arnold,et al.  A novel cyclin encoded by a bcl1-linked candidate oncogene , 1991, Nature.

[68]  Jan C. van der Leun,et al.  Development of skin tumors in hairless mice after discontinuation of ultraviolet irradiation. , 1991 .

[69]  T. Hunter Cooperation between oncogenes , 1991, Cell.

[70]  M. Bradl,et al.  Malignant melanoma in transgenic mice. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. DiGiovanni Modification of multistage skin carcinogenesis in mice. , 1991, Progress in experimental tumor research.

[72]  H. Ruley Transforming collaborations between ras and nuclear oncogenes. , 1990, Cancer cells.

[73]  S. Palmieri Oncogene requirements for tumorigenicity: cooperative effects between retroviral oncogenes. , 1989, Current topics in microbiology and immunology.

[74]  L. S. Cram,et al.  Spontaneous immortalization rate of cultured Chinese hamster cells. , 1986, Journal of the National Cancer Institute.

[75]  R. Newbold,et al.  Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene , 1983, Nature.

[76]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[77]  D. Röhme Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[78]  W. Silvers The Coat Colors of Mice , 1979, Springer New York.

[79]  C. D. Edwards,et al.  Multiple Mechanisms of p 16 @ NK 4 AInactivation in Non-Small Cell Lung Cancer Cell Lines , 2022 .