LEAD–ANTIMONY SULFOSALTS FROM TUSCANY (ITALY). XII. BOSCARDINITE, TlPb4(Sb7As2)∑9S18, A NEW MINERAL SPECIES FROM THE MONTE ARSICCIO MINE: OCCURRENCE AND CRYSTAL STRUCTURE

The new mineral species boscardinite was discovered in the barite – pyrite – iron oxides deposit of Monte Arsiccio, near Sant’Anna di Stazzema, in the Apuan Alps, Tuscany, Italy. It forms a millimetric compact mass in a quartz vein embedded in dolomitic rocks. Other associated sulfides are stibnite and zinkenite. Boscardinite is metallic grey. Under the ore microscope, it is white; pleochroism is not discernible. Anisotropism is distinct, with an ubiquitous polysynthetic twinning; rotation tints are in shades of grey. Minimum and maximum reflectance data for COM wavelengths [λ (nm), R air (%)] are: 470: 33.8/39.3, 546: 32.1/38.0, 589: 31.2/36.9, 650: 29.7/35.3. The hardness was not measured owing to the scarcity of the available material. Electron-microprobe analyses of two samples gave (wt. %, result mean of five analyses): 1) sample 4977: Ag 1.48(4), Tl 9.72(26), Pb 23.36(20), Sb 35.25(60), As 5.78(10), S 22.14(45), Se 0.04(1), total 97.77(90); 2) sample 4989: Ag 1.37(7), Tl 8.96(19), Pb 25.74(20), Sb 33.46(32), As 6.54(8), S 22.08(29), Se 0.01(1), total 98.16(63). On the basis of ∑ Me = 14 apfu , they lead to the formulae Ag 0.36 Tl 1.23 Pb 2.92 (Sb 7.50 As 2.00 ) ∑9.50 S 17.88 Se 0.01 and Ag 0.33 Tl 1.13 Pb 3.20 (Sb 7.09 As 2.25 ) ∑9.34 S 17.76 , respectively. A single-crystal X-ray study of boscardinite indicates triclinic symmetry, space group P 1, with a 8.0929(4), b 8.7610(5), c 22.4971(11) A, α 90.868(4), β 97.247(4), γ 90.793(4)°, V 1582.0(2) A 3 , Z = 2. The d values (A) of the main powder-diffraction lines, corresponding to multiple hkl indices, are (relative intensity visually estimated): 3.705 (ms), 3.540 (ms), 3.479 (m), 3.085 (m), 2.977 (ms), 2.824 (vs), 2.707 (s), 2.324 (ms), and 2.176 (ms). Boscardinite is the Tl–Sb homeotype of baumhauerite; its crystal structure has been solved by X-ray single-crystal study on the basis of 4319 observed reflections with a final R 1 = 0.045. It can be described in the sartorite homologous series as formed by the 1:1 alternation of sartorite-type and dufrenoysite-type layers. The simplified structural formula is based on 18 sulfur atoms and can ideally be written as TlPb 4 (Sb 7 As 2 ) ∑9 S 18 . The name boscardinite honors Matteo Boscardin for his contribution to knowledge of the regional mineralogy of Italy.

[1]  C. Reimann,et al.  Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist , 2011 .

[2]  P. Orlandi,et al.  VOLASCHIOITE, Fe3+4(SO4)O2(OH)6·2H2O, A NEW MINERAL SPECIES FROM FORNOVOLASCO, APUAN ALPS, TUSCANY, ITALY , 2011 .

[3]  P. Orlandi,et al.  LEAD–ANTIMONY SULFOSALTS FROM TUSCANY (ITALY). XI. THE NEW MINERAL SPECIES PARASTERRYITE, Ag4Pb20(Sb14.5As9.5)∑24S58, AND ASSOCIATED STERRYITE, Cu(Ag,Cu)3Pb19(Sb,As)22(As–As)S56, FROM THE POLLONE MINE, TUSCANY, ITALY , 2011 .

[4]  Carlo Maria Gramaccioli,et al.  Vulcano : tre secoli di mineralogia , 2011 .

[5]  P. Orlandi,et al.  Chabournéite from Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): occurrence and crystal structure , 2010 .

[6]  L. Bindi,et al.  Dalnegroite, Tl5–xPb2x(As,Sb)21–xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland , 2009, Mineralogical Magazine.

[7]  P. Orlandi,et al.  Ankangite from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): occurrence, crystal structure, and classification problems in cryptomelane group minerals , 2009 .

[8]  A. Meerschaut,et al.  Crystal structure of the new compound Pb3+xSb3−xS7−xCl1+x(x∼0.45): The homologous series Pb(2+2N)(Sb,Pb)(2+2N)S(2+2N)(S,Cl)(4+2N)ClN and its polychalcogenide derivatives (N=1–3) , 2008 .

[9]  Masaaki Shimizu,et al.  Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy , 2008 .

[10]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Y. Xiong Hydrothermal thallium mineralization up to 300 °C: A thermodynamic approach , 2007 .

[12]  P. Bagnoli,et al.  The Fornovolasco Schists of the Apuane Alps (northern Tuscany, Italy); a new hypothesis for their stratigraphic setting , 2004 .

[13]  T. Armbruster,et al.  Another step toward understanding the true nature of sartorite: Determination and refinement of a ninefold superstructure , 2003 .

[14]  T. Armbruster,et al.  Structural and chemical variations in rathite, Pb8Pb4—x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure , 2002 .

[15]  Z. Johan,et al.  Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: A complex epithermal, sediment-hosted, ore-forming system , 2000 .

[16]  A. Edenharter,et al.  Jentschite (TlPbAs2SbS6) a new sulphosalt mineral from Lengenbach, Binntal (Switzerland) , 1997, Mineralogical Magazine.

[17]  B. Hofmann,et al.  Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba-mineralisation, Binn Valley, Switzerland , 1996 .

[18]  J. S. Reid,et al.  The Analytical Calculation of Absorption in Multifaceted Crystals , 1995 .

[19]  A. Pring,et al.  Polytypism in baumhauerite , 1994 .

[20]  Y. Matsushita,et al.  Refinement of the crystal structure of hutchinsonite, TlPbAs5S9 , 1994 .

[21]  S. Graeser,et al.  Edenharterite (TlPbAs 3 S 6 ); a new mineral from Lengenbach, Binntal (Switzerland) , 1992 .

[22]  Konrad B. Krauskopf,et al.  Principles and applications of inorganic geochemistry: Gunter Faure. MacMillan, 1991, xiii + 626p., US $58.00 (ISBN 0-02-336441-6) , 1991 .

[23]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[24]  A. Pring,et al.  Baumhauerite-2a; a silver-bearing mineral with a baumhauerite-like supercell from Lengenbach, Switzerland , 1990 .

[25]  G. Cortecci,et al.  The barite-pyrite-iron oxides deposit of Monte Arsiccio (Apuane Alps); geological setting, mineralogy, fluid inclusions, stable isotopes and genesis , 1990 .

[26]  D. Ohnenstetter,et al.  Argent et thallium dans les sulfosels de la série de la sartorite (gisement de Lengenbach, vallée de Binn, Suisse) , 1989 .

[27]  H. Sawada The crystal structure of senandorite (andorite VI): PbAgSb3S6 , 1987 .

[28]  C. Schoumacher,et al.  Thallium, nickel, cobalt and other trace elements in iron sulfides from belgian lead-zinc vein deposits , 1983 .

[29]  Z. Johan,et al.  La chabournéite, un nouveau minéral thallifère , 1981 .

[30]  P. Orlandi,et al.  Versiliaite and apuanite, two new minerals from the Apuan Alps, Italy , 1979 .

[31]  Z. Johan,et al.  Atlas des mineraux metalliques , 1977 .

[32]  L. Carmignani,et al.  I Giacimenti a barite, pirite e ossidi di ferro delle Alpi Apuane. Studio minerogenetico e strutturale. Nuove osservazioni sui giacimenti polimetallici , 1976 .

[33]  P. Engel,et al.  Die Kristallstruktur von Baumhauerit , 1969 .

[34]  Y. Takéuchi,et al.  The crystal structure of wallisite, PbTlCuAs2S5, the Cu analogue of hatchite, PbTlAgAs2S5 , 1968 .

[35]  J. Jambor New lead sulfantimonides from Madoc, Ontario; Part 2, Mineral descriptions , 1967 .

[36]  F. Marumo,et al.  The crystal structure of hatchite, PbTlAgAs2S5 , 1967 .

[37]  J. Jambor New lead sulfantimonides from Madoc, Ontario, Part I , 1967 .

[38]  F. Marumo,et al.  The crystal structure of rathite-I* , 1965 .

[39]  M. L. Bihan Étude structurale de quelques sulfures de plomb et d'arsenic naturels du gisement de Binn , 1962 .