Network traffic classification for anomaly detection fuzzy clustering based approach

In this paper we develop network traffic classification and anomaly detection methods based on traffic time series analysis using fuzzy clustering technique. The effectiveness of fuzzy and possibilistic algorithms is compared on generated traffic data with and without traffic attack components.

[1]  Lipo Wang,et al.  Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Anil K. Jain,et al.  Dimensionality reduction using genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[3]  Ilkka Nomos On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995 .

[4]  Vladik Kreinovich,et al.  Filtering out high frequencies in time series using F-transform , 2014, Inf. Sci..

[5]  Walter Willinger,et al.  Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements , 1995 .

[6]  Irina Perfilieva,et al.  Fuzzy transforms: Theory and applications , 2006, Fuzzy Sets Syst..

[7]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[8]  Satarupa Banerjee,et al.  Lidar detection of underwater objects using a neuro-SVM-based architecture , 2006, IEEE Transactions on Neural Networks.

[9]  Bing Liu,et al.  An efficient semi-unsupervised gene selection method via spectral biclustering , 2006, IEEE Transactions on NanoBioscience.

[10]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[11]  Antonio Pescapè,et al.  Traffic classification and its applications to modern networks , 2009, Comput. Networks.

[12]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[13]  Lipo Wang Support vector machines : theory and applications , 2005 .

[14]  Lipo Wang,et al.  Data Mining With Computational Intelligence , 2006, IEEE Transactions on Neural Networks.

[15]  Yongjun Wang,et al.  Distributed Collaborative DDoS detection method based on traffic classification features , 2013 .

[16]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[17]  Ming Li,et al.  Change trend of averaged Hurst parameter of traffic under DDOS flood attacks , 2006, Comput. Secur..

[18]  Ki Hoon Kwon,et al.  DDoS attack detection method using cluster analysis , 2008, Expert Syst. Appl..

[19]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[20]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[21]  Wei Chen,et al.  A novel approach to detecting DDoS Attacks at an Early Stage , 2006, The Journal of Supercomputing.

[22]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[23]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[24]  Benjamin Naumann,et al.  Learning And Soft Computing Support Vector Machines Neural Networks And Fuzzy Logic Models , 2016 .

[25]  Witold Pedrycz,et al.  Advances in Fuzzy Clustering and its Applications , 2007 .

[26]  Ming Li,et al.  Fractional Gaussian Noise: A Tool of Characterizing Traffic for Detection Purpose , 2004, AWCC.

[27]  Vilém Novák,et al.  Analysis of seasonal time series using fuzzy approach , 2010, Int. J. Gen. Syst..

[28]  Vasilios Katos,et al.  Real time DDoS detection using fuzzy estimators , 2012, Comput. Secur..

[29]  Jianhua Li,et al.  Enhancing DDoS Flood Attack Detection via Intelligent Fuzzy Logic , 2010, Informatica.

[30]  Aikaterini Mitrokotsa,et al.  DDoS attacks and defense mechanisms: classification and state-of-the-art , 2004, Comput. Networks.

[31]  Lipo Wang,et al.  On competitive learning , 1997, IEEE Trans. Neural Networks.