Ready, Set, Go! The Voronoi diagram of moving points that start from a line
暂无分享,去创建一个
[1] J. Sack,et al. Handbook of computational geometry , 2000 .
[2] Raimund Seidel,et al. The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..
[3] Jon M. Kleinberg,et al. Voronoi Diagrams of Rigidly Moving Sets of Points , 1992, Inf. Process. Lett..
[4] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1985, SCG '85.
[5] Hiroshi Imai,et al. Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.
[6] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[7] Thomas Roos,et al. New Upper Bounds on Voronoi Diagrams of Moving Points , 1997, Nord. J. Comput..
[8] Olivier Devillers,et al. Queries on Voronoi Diagrams of Moving Points , 1996, Comput. Geom..
[9] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.
[10] Leonidas J. Guibas,et al. Data structures for mobile data , 1997, SODA '97.
[11] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[12] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[13] J.. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .