Hyper{X Post{Flight Trajectory Reconstruction

The formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high-speed research vehicle and its implementation for the reconstruction and analysis of flight-test data are discussed. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based on numerical integration of inertial measurement data along with redundant measurements of the vehicle state provided by global positioning system measurements of position and velocity. The equations of motion are formulated to include the effects of several systematic error sources, the values of which may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based on all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from flight data.

[1]  W. F. Phillips,et al.  Review of Attitude Representations Used for Aircraft Kinematics , 2001 .

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  G. de Miguel Vela,et al.  Radar bias correction based on GPS measurements for ATC applications , 2002 .

[4]  F. W. Hopper Trajectory, atmosphere, and wind reconstruction from Viking entry measurements , 1975 .

[5]  Walter C. Engelund,et al.  Hyper-X Research Vehicle Experimental Aerodynamics Test Program Overview , 2001 .

[6]  Craig A. Kluever,et al.  Estimation and Prediction of Orbital Debris Reentry Trajectories , 2002 .

[7]  W. E. Wagner,et al.  Statistical Trajectory Estimation Programs. Volume 2 - Utilization report , 1969 .

[8]  J. T. Findlay,et al.  Adaptation of a strapdown formulation for processing inertial platform data , 1984 .

[9]  M. Steinkopf,et al.  The mission and post-flight analysis of the atmospheric re-entry demonstrator (ARD) , 2002 .

[10]  Isaac Sofair Improved Method for Calculating Exact Geodetic Latitude and Altitude , 1997 .

[11]  Paul L. Moses X-43C Plans and Status , 2003 .

[12]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[13]  Charles R. Mcclinton,et al.  Hyper-X Program Status , 2001 .

[14]  Michael DiFulvio,et al.  Hyper-X Stage Separation Wind-Tunnel Test Program , 2001 .

[15]  Walter C. Engelund,et al.  Integrated Aeropropulsive Computational Fluid Dynamics Methodology for the Hyper-X Flight Experiment , 2001 .

[16]  Jeffrey S. Robinson,et al.  Hyper-X Stage Separation—Simulation Development and Results , 2001 .

[17]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[18]  M. Shuster Constraint in attitude estimation part II: Unconstrained estimation , 2003 .

[19]  Paul V. Tartabini,et al.  HYPER -X STAGE SEPARA TION TRAJECTORY VALI DATION STUDIES , 2003 .

[20]  G. L. Adams E.A. Euler,et al.  Design and Reconstruction of the Viking Lander Descent Trajectories , 1978 .

[21]  C Engelund Walter,et al.  Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments , 2000 .

[22]  J. T. Findlay,et al.  Shuttle /STS-1/ entry trajectory reconstruction , 1981 .

[23]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[24]  Mark E. Pittelkau,et al.  An analysis of the quaternion attitude determination filter , 2003 .

[25]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[26]  J. Zarnecki,et al.  Analysis of entry accelerometer data: A case study of Mars Pathfinder , 2003 .

[27]  I. Sofair,et al.  Improved Method for Calculating Exact Geodetic Latitude and Altitude Revisited , 2000 .

[28]  L. T. Nguyen,et al.  Review of X-43A Return to Flight Activities and Current Status , 2003 .

[29]  W. E. Wagner,et al.  Re-entry filtering, prediction, and smoothing. , 1966 .

[30]  Walter C. Engelund,et al.  Aerodynamic database development for the Hyper-X airframe integrated scramjet propulsion experiments , 2000 .

[31]  J. F. Jones Development and performance analysis of a trajectory estimator for an entry through the Martian atmosphere. , 1972 .

[32]  Charles E. Cockrell,et al.  Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development , 2002 .

[33]  Anil V. Rao,et al.  Minimum-Variance Estimation of Reentry Debris Trajectories , 2000 .

[34]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[35]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[36]  Eugene A. Morelli Flight Test of Optimal Inputs and Comparison with Conventional Inputs , 1999 .

[37]  Lawrence D. Huebner,et al.  Hyper-X flight engine ground testing for X-43 flight risk reduction , 2001 .

[38]  Pieter G. Buning,et al.  Computational Fluid Dynamics Prediction of Hyper-X Stage Separation Aerodynamics , 2001 .

[39]  P. Kallemeyn,et al.  Mars Pathfinder Entry, Descent, and Landing Reconstruction , 1999 .

[40]  W. E. Wagner,et al.  Formulation on statistical trajectory estimation programs , 1970 .

[41]  J. T. Findlay,et al.  Shuttle entry trajectory reconstruction using inflight accelerometer and gyro measurements , 1979 .

[42]  Eugene A. Morelli,et al.  Estimating noise characteristics from flight test data using optimal fourier smoothing , 1995 .

[43]  Marc L. Sabin Linear Filtering of Ballistic-Entry Probe Data for Atmospheric Reconstruction , 1975 .

[44]  Yves Nievergelt,et al.  Computing Geodetic Coordinates in Space , 2000 .

[45]  Robert M. Rogers,et al.  Applied Mathematics in Integrated Navigation Systems , 2000 .

[46]  Eugene A. Morelli,et al.  System IDentification Programs for AirCraft (SIDPAC) , 2002 .