Cannon-Thurston fibers for iwip automorphisms of $F_N$

For any atoroidal iwip $\phi \in Out(F_N)$ the mapping torus group $G_\phi=F_N\rtimes_\phi e$ is hyperbolic, and the embedding $\iota: F_N \overset{\lhd}{\longrightarrow} G_\phi$ induces a continuous, $F_N$-equivariant and surjective {\em Cannon-Thurston map} $\hat \iota: \partial F_N \to \partial G_\phi$. We prove that for any $\phi$ as above, the map $\hat \iota$ is finite-to-one and that the preimage of every point of $\partial G_\phi$ has cardinality $\le 2N$. We also prove that every point $S\in \partial G_\phi$ with $\ge 3$ preimages in $\partial F_N$ has the form $(wt^m)^\infty$ where $w\in F_N, m\ne 0$, and that there are at most $4N-5$ distinct $F_N$-orbits of such {\em singular} points in $\partial G_\phi$ (for the translation action of $F_N$ on $\partial G_\phi$). By contrast, we show that for $k=1,2$ there are uncountably many points $S\in \partial G_\phi$ (and thus uncountably many $F_N$-orbits of such $S$) with exactly $k$ preimages in $\partial F_N$.

[1]  Mladen Bestvina,et al.  A combination theorem for negatively curved groups , 1992 .

[2]  Michael Handel,et al.  The Tits alternative for Out(Fn) II: A Kolchin type theorem , 1997 .

[3]  K. Vogtmann,et al.  Moduli of graphs and automorphisms of free groups , 1986 .

[4]  M. Lustig,et al.  ℝ‐trees and laminations for free groups II: the dual lamination of an ℝ‐tree , 2007, math/0702281.

[5]  C. Leininger,et al.  Conical limit points and the Cannon-Thurston map , 2014, 1401.2638.

[6]  V. Gerasimov Floyd maps for relatively hyperbolic groups , 2012 .

[7]  Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity , 2010, 1008.3470.

[8]  Daniel Meyer Invariant Peano curves of expanding Thurston maps , 2009, 0907.1536.

[9]  James W. Cannon,et al.  Group invariant Peano curves , 2007 .

[10]  V. Gerasimov,et al.  Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. , 2009, 0908.0705.

[11]  Michael Handel,et al.  Laminations, trees, and irreducible automorphisms of free groups , 1997 .

[12]  D. Gaboriau,et al.  The rank of actions on ${R}$-trees , 1995 .

[13]  M. Mitra Cannon-Thurston maps for trees of hyperbolic metric spaces , 1996, math/9609209.

[14]  Vincent Guirardel Approximations of stable actions on R-trees , 1998 .

[15]  A. Hilion,et al.  Botany of irreducible automorphisms of free groups , 2012, 1201.1169.

[16]  Vincent Guirardel Dynamics of Out(Fn) on the boundary of outer space , 2000 .

[17]  P. Reynolds,et al.  Indecomposable $F_N$-trees and minimal laminations , 2011, 1110.3506.

[18]  K. Vogtmann Automorphisms of Free Groups and Outer Space , 2002 .

[19]  Rita Gitik,et al.  On the Combination Theorem for Negatively Curved Groups , 1996, Int. J. Algebra Comput..

[20]  Y. Matsuda,et al.  On Cannon–Thurston maps for relatively hyperbolic groups , 2012, 1206.5868.

[21]  Ending laminations for hyperbolic group extensions , 1997 .

[22]  Thierry Coulbois,et al.  $\R$-trees and laminations for free groups II: The dual lamination of an $\R$-tree , 2007 .

[23]  F. Paulin The Gromov topology on R-trees , 1989 .

[24]  C. McMullen Local connectivity, Kleinian groups and geodesics on the blowup of the torus , 2001 .

[25]  Y. Minsky On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds , 1994 .

[26]  Semiconjugacies between Kleinian group actions on the Riemann sphere , 1999 .

[27]  M. Lustig Conjugacy and Centralizers for Iwip Automorphisms of Free Groups , 2007 .

[28]  M. Lustig,et al.  Intersection Form, Laminations and Currents on Free Groups , 2007, 0711.4337.

[29]  CANNON–THURSTON MAPS DO NOT ALWAYS EXIST , 2012, Forum of Mathematics, Sigma.

[30]  Cannon–Thurston maps for pared manifolds of bounded geometry , 2005, math/0503581.

[31]  Gilbert Levitt,et al.  An index for counting fixed points of automorphisms of free groups , 1998 .

[32]  M. Lustig,et al.  IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE , 2003, Journal of the Institute of Mathematics of Jussieu.

[33]  P. Reynolds On indecomposable trees in the boundary of outer space , 2010, 1002.3141.

[34]  Ilya Kapovich Algorithmic detectability of iwip automorphisms , 2012, 1209.3732.

[35]  Saul Schleimer,et al.  The universal Cannon--Thurston maps and the boundary of the curve complex , 2008, 0808.3521.

[36]  M. Lustig,et al.  PING-PONG AND OUTER SPACE , 2009, 0902.4017.

[37]  Hyperbolic automorphisms of free groups , 1999, math/9906008.

[38]  M. Lustig,et al.  Non-unique ergodicity, observers' topology and the dual algebraic lamination for $\Bbb R$-trees , 2007, 0706.1313.

[39]  L. Mosher Hyperbolic extensions of groups , 1996 .

[40]  V. Guirardel,et al.  Approximations of stable actions on $ \Bbb {R} $-trees , 1998 .

[41]  Bruce Kleiner,et al.  Hyperbolic groups with low-dimensional boundary , 2000 .

[42]  P. Reynolds Dynamics of irreducible endomorphisms of FN , 2010, 1008.3659.

[44]  John W. Milnor,et al.  Pasting Together Julia Sets: A Worked Out Example of Mating , 2004, Exp. Math..

[45]  The Cannon–Thurston map for punctured-surface groups , 2006 .

[46]  Michael Handel,et al.  The Tits alternative for Out (F~n) I: Dynamics of exponentially-growing automorphisms , 1997 .

[47]  V. Guirardel Actions of finitely generated groups on $\mathbb{R}$-trees , 2008 .

[48]  D. Wise,et al.  Cubulating hyperbolic free-by-cyclic groups: The irreducible case , 2013, 1311.2084.

[49]  M. Mitra Cannon-Thurston maps for hyperbolic group extensions , 1998 .

[50]  Mladen Bestvina,et al.  Train tracks and automorphisms of free groups , 1992 .

[51]  A. Hilion,et al.  Rips Induction: Index of the dual lamination of an $\R$-tree , 2010, 1002.0972.

[52]  V. Guirardel,et al.  Actions of finitely generated groups on R-trees , 2006, math/0607295.

[53]  Ilya Kapovich,et al.  Boundaries of hyperbolic groups , 2002 .

[54]  Thierry Coulbois,et al.  ℝ‐trees and laminations for free groups I: algebraic laminations , 2008 .

[55]  Igor Rivin Zariski Density and Genericity , 2010 .

[56]  Martin Lustig,et al.  Very small group actions on R-trees and dehn twist automorphisms , 1995 .

[57]  H. Short,et al.  Greenberg's Theorem for Quasiconvex Subgroups of Word Hyperbolic Groups , 1996, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[58]  Relative hyperbolicity, trees of spaces and Cannon-Thurston maps , 2007, 0708.3578.

[59]  M. Mitra On a theorem of Scott and Swarup , 1999, 1209.4165.

[60]  B. Bowditch Stacks of hyperbolic spaces and ends of 3-manifolds : preprint , 2002 .

[61]  C. Leininger,et al.  Dynamics on free-by-cyclic groups , 2013, 1301.7739.