Growing perovskite into polymers for easy-processable optoelectronic devices

Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

[1]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[2]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[3]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[4]  G. Boschloo,et al.  Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO2 , 2003 .

[5]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[6]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[7]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[8]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[9]  N. S. Sariciftci,et al.  Photoinduced electron transfer reactions in mixed films of π‐conjugated polymers and a homologous series of tetracyano‐p‐quinodimethane derivatives , 1995 .

[10]  Anders Hagfeldt,et al.  Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. , 2006, The journal of physical chemistry. B.

[11]  Leslie Roberts,et al.  A Proof of Principle , 2007, Science.

[12]  Improved Photovoltaic Performance of MEH‐PPV/PCBM Solar Cells via Incorporation of Si Nanocrystals , 2013 .

[13]  S. Yurdakul,et al.  Fourier transform infrared and Raman spectroscopic studies on 4-tert.-butylpyridine and its metal(II) tetracyanonickelate complexes , 1997 .

[14]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[15]  G. Lerario,et al.  Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells , 2014 .

[16]  Yanchun Han,et al.  Dewetting behavior of polystyrene film filled with (C6H5C2H4NH3)2PbI4. , 2008, The Journal of chemical physics.

[17]  I. S. Turan,et al.  RSC Advances , 2015 .

[18]  E. Chang,et al.  Enhancing the efficiency of MEH-PPV and PCBM based polymer solar cells via optimization of device configuration and processing conditions , 2006 .

[19]  Wu,et al.  Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. , 1993, Physical review. B, Condensed matter.

[20]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[21]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[22]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[23]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[24]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[25]  P. Supaphol,et al.  Color Change of Electrospun Polystyrene/ MEH-PPV Fibers from Orange to Yellow through Partial Decomposition of MEH Side Groups , 2007 .

[26]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[27]  Vincenzo Palermo,et al.  Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies , 2014 .

[28]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[29]  M. Tuomikoski,et al.  Effect of molecular aggregation by thermal treatment on photovoltaic properties of MEH-PPV: Fullerene-based solar cells , 2009 .

[30]  Yang Yang,et al.  Effects of thermal annealing on the performance of polymer light emitting diodes , 2002 .

[31]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[32]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[33]  Jochen Mattay,et al.  Photoinduced electron transfer , 1990 .

[34]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[35]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[36]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[37]  Sue A. Carter,et al.  Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles , 1999 .

[38]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[39]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[40]  John E. Bowers,et al.  Time‐resolved photoluminescence from poly[2‐methoxy, 5‐(2’‐ethyl‐hexyloxy)‐p‐phenylene‐vinylene]: Solutions, gels, films, and blends , 1993 .

[41]  G. Gigli,et al.  Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. , 2014, Nano letters.

[42]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[43]  Marye Anne Fox,et al.  PHOTOINDUCED ELECTRON TRANSFER , 1990 .

[44]  Vincenzo Palermo,et al.  Photovoltaic charge generation visualized at the nanoscale: a proof of principle. , 2008, Journal of the American Chemical Society.

[45]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[46]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[47]  V. Palermo,et al.  Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials. , 2010, Accounts of chemical research.

[48]  V. Palermo,et al.  Probing Local Surface Potential of Quasi‐One‐Dimensional Systems: A KPFM Study of P3HT Nanofibers , 2008 .

[49]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[50]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[51]  N. Greenham,et al.  Triplet Exciton and Polaron Dynamics in Phosphorescent Dye Blended Polymer Photovoltaic Devices , 2010 .

[52]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[53]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[54]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.