Modeling and simulation of large-scale, linear, multiport systems

A large number of physical and engineering systems may be represented directly in terms of component energy characteristics and their power interactions. When the system elements are modeled as energetic multiports, and their interconnections by power bonds, then the bond graph language is a natural one for describing the entire system. Bond graphs may be written for dynamic systems involving various energy types, such as electrical, mechanical, fluid and thermal; all energy types may be coexistent. Useful modeling elements include multiport storages, dissipators, and junction elements and transducers, as well as sources. Bond graph models of linear multiport systems may be transformed to state-space form by a powerful algorithm based upon operational causality. From the state-space equations, dynamic responses may be obtained by the matrix exponential technique, thereby allowing the direct digital simulation of linear multiport models. The ENPORT program is a realization of the bond graph reduction algorithm. It is a principal purpose of this paper to describe the procedure upon which ENPORT is based, and to present some results. Important features of ENPORT are its choice of physically significant state variables, its use of operational causality to obtain an orderly formulation of system equations, and its ability to handle systems containing static storage subfields.