Morphology, chemistry, and spectral properties of Hawaiian rock coatings and implications for Mars

[1] We studied coatings on five glass-rich basalts from the Big Island of Hawaii. The coatings are characterized by complex morphologies and their thicknesses range from 3 to 80 μm. Coating chemistries are predominantly hydrated silica with minor amounts of Fe-, Ti-, and S-bearing materials. Visible, near infrared, and thermal infrared spectra of the coatings demonstrate that coatings as thin as 3 μm mask the spectral character of the substrate basalt. The Fe-, Ti-, and S-bearing components control the VNIR coating spectra. The hydrated silica component of the coatings dominates the thermal infrared coating spectra. The coating chemistries are consistent with leaching and/or dissolution of basalt glass or tephra in aqueous, acidic, and oxidizing conditions and subsequent precipitation of insoluble phases. Similar alteration conditions are thought to have occurred on Mars, making formation of such coatings on Martian lithologies feasible. Given the capabilities of various Mars missions, if coatings like those of this study were present on Martian lithologies, their chemical and/or spectral signatures would be detectable. Chemical and spectral data from thin (≤10 μm), Fe- and Ti-bearing coatings are consistent with phases capable of explaining the high-SiO2 component of Type 2 surfaces previously identified in the Thermal Emission Spectrometer data set and are potentially consistent with spectral data from the Mars Exploration Rovers.

[1]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[2]  J. Bishop,et al.  Acid-fog deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars , 2006 .

[3]  R. Arvidson,et al.  Si- and Ti-rich Surface Coatings on Hawaiian Basalt and Implications for Remote Sensing on Mars , 2006 .

[4]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[5]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[6]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[7]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[8]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[9]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[10]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[11]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[12]  S. McLennan,et al.  Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars , 2005 .

[13]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[14]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[15]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[16]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[17]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[18]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[19]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[20]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[21]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[22]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[23]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[24]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[25]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[26]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[27]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[28]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[29]  T. Advocat,et al.  Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses) , 2003 .

[30]  S. McLennan Sedimentary silica on Mars , 2003 .

[31]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[32]  S. Murchie,et al.  A model for formation of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface , 2002 .

[33]  H. Schmincke,et al.  Palagonite – a review , 2002 .

[34]  Jeffrey R. Johnson,et al.  Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .

[35]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[36]  J. Mustard,et al.  Effects of glass content and oxidation on the spectra of SNC-like basalts: Applications to Mars remote sensing , 2002 .

[37]  S. Gíslason,et al.  The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11 , 2001 .

[38]  M. Mellon,et al.  Recent gullies on Mars and the source of liquid water , 2001 .

[39]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[40]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[41]  M. Wyatt Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy , 2001 .

[42]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[43]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .

[44]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[45]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[46]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[47]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[48]  Melissa D. Lane,et al.  Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite , 1999 .

[49]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[50]  Nicolas Thomas,et al.  Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars , 1999 .

[51]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[52]  T. Advocat,et al.  Kinetic aspects of basaltic glass dissolution at 90°C: role of aqueous silicon and aluminium , 1997 .

[53]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[54]  D. Ming,et al.  Occurrence of a Titanium-bearing Jarosite from Hawaii , 1996 .

[55]  Jeffrey Edward Moersch,et al.  Thermal emission from particulate surfaces : a comparison of scattering models with measured spectra , 1995 .

[56]  S. Brantley,et al.  Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations , 1995 .

[57]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[58]  V. Daux,et al.  Geochemical evolution of basaltic rocks subjected to weathering: Fate of the major elements, rare earth elements, and thorium , 1994 .

[59]  E. Kamitsos,et al.  Infrared-reflectance spectra of heat-treated sol-gel-derived silica. , 1993, Physical review. B, Condensed matter.

[60]  C. Pieters,et al.  Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials. , 1993, Geochimica et cosmochimica acta.

[61]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[62]  C. Pieters,et al.  The Continuum Slope of Mars: Bidirectional Reflectance Investigations and Applications to Olympus Mons , 1993 .

[63]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[64]  N. M. Rose Dissolution rates of prehnite, epidote, and albite , 1991 .

[65]  L. Riu,et al.  New interpretation of the IR reflectance spectra of SiO2-rich films on soda-lime glass , 1991 .

[66]  H. Furnes,et al.  A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation , 1991 .

[67]  A. Kahle,et al.  Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows , 1991 .

[68]  Anne B. Kahle,et al.  Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .

[69]  K. Keil,et al.  Alteration of basaltic glasses from north-central British Columbia, Canada , 1990 .

[70]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[71]  R. Morris,et al.  Matrix effects for reflectivity spectra of dispersed nanophase (superparamagnetic) hematite with application to Martian spectral data , 1990 .

[72]  J. Petit,et al.  Energetic ion beam analysis in the Earth sciences , 1990, Nature.

[73]  P. Lange Evidence for disorder‐induced vibrational mode coupling in thin amorphous SiO2 films , 1989 .

[74]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[75]  R. E. Walker,et al.  Relative dating of Hawaiian lava flows using multispectral thermal infrared images: A new tool for geologic mapping of young volcanic terranes , 1988 .

[76]  G. W. Arnold,et al.  Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12 , 1988 .

[77]  D. Mogk,et al.  Application of Auger Electron Spectroscopy (AES) to naturally weathered hornblende , 1988 .

[78]  J. Schott,et al.  Multisite surface reaction versus transport control during the hydrolysis of a complex oxide , 1988 .

[79]  Kirk Ct,et al.  Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988 .

[80]  H. Scholze Glass-water interactions , 1988 .

[81]  J. Drever,et al.  The geochemistry of natural waters , 1988 .

[82]  J. Crovisier,et al.  Dissolution of basaltic glass in seawater: Mechanism and rate , 1987 .

[83]  G. Clow Generation of liquid water on Mars through the melting of a dusty snowpack , 1987 .

[84]  S. Gíslason,et al.  Meteoric water-basalt interactions. I. A laboratory study , 1987 .

[85]  J. Schott,et al.  Fundamental processes controlling the first stage of alteration of a basalt glass by seawater: an experimental study between 200° and 320°C , 1987 .

[86]  Roger G. Burns,et al.  Ferric sulfates on Mars , 1987 .

[87]  G. Lucovsky,et al.  Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition , 1986 .

[88]  G. Lucovsky,et al.  Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition , 1986 .

[89]  M. Carr,et al.  Possible precipitation of ice at low latitudes of Mars during periods of high obliquity , 1985, Nature.

[90]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[91]  A. White Weathering characteristics of natural glass and influences on associated water chemistry , 1984 .

[92]  T. Farr,et al.  Rock coatings in Hawaii , 1984 .

[93]  H. Furnes Chemical changes during progressive subaerial palagonitization of a subglacial olivine tholeiite hyaloclastite: A microprobe study , 1984 .

[94]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[95]  George W. Arnold,et al.  Mechanisms for alkali leaching in mized-NaK silicate glasses , 1983 .

[96]  John M. Miller,et al.  The influence on rain chemistry of the Hawaiian Volcano Kilauea , 1982 .

[97]  C. Allen,et al.  Altered basaltic glass: A terrestrial analog to the soil of Mars , 1981 .

[98]  B. Clark,et al.  The salts of Mars , 1981 .

[99]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[100]  M. Zaman,et al.  The relative influences of Al2O3 and Fe2O3 on the chemical durability of silicate glasses at different pH values , 1978 .

[101]  H. Mao,et al.  Optical spectra and electron paramagnetic resonance of lunar and synthetic glasses: a study of the effects of controlled atmosphere, composition, and temperature. , 1976 .

[102]  R. W. Douglas,et al.  The dependence on the pH of the decomposition of glasses by aqueous solutions , 1972 .

[103]  B. Jones,et al.  Weathering of Basaltic Tephra on the Island of Hawaii , 1972 .

[104]  John B. Adams,et al.  Mars - Interpretation of spectral reflectivity of light and dark regions. , 1969 .

[105]  Robert K. Vincent,et al.  The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes , 1968 .

[106]  A. Emslie,et al.  Infrared Spectra from Fine Particulate Surfaces , 1966, Science.

[107]  R. J. P. Lyon,et al.  Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. part ii- rough and powdered surfaces , 1963 .

[108]  G. A. Macdonald Solfataric alteration of rocks at Kilauea Volcano , 1944 .

[109]  A. Knoll,et al.  Surface Coatings at Meridiani Planum, Mars , 2006 .

[110]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[111]  R. Morris,et al.  Palagonitic Mars from rock rinds to dust; evidence from visible, near-IR, and thermal emission spectra of poorly crystalline materials , 2003 .

[112]  R. Morris,et al.  New Insights into the Geology of the Mars Pathfinder Landing Site from Spectral and Morphologic Analysis of the 12-Color Superpan Panorama , 2003 .

[113]  R. Arvidson,et al.  Remote Mapping of the Ka'u Desert, Hawai'i: Silica in a Mars Analog Terrain , 2003 .

[114]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[115]  D. Ming,et al.  Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids. , 1996, Geochimica et cosmochimica acta.

[116]  K. Knauss,et al.  Diopside dissolution kinetics as a function of pH, CO2, temperature, and time , 1993 .

[117]  Almeida Detection of LO modes in glass by infrared reflection spectroscopy at oblique incidence. , 1992, Physical review. B, Condensed matter.

[118]  Kirk Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988, Physical review. B, Condensed matter.

[119]  Brian Curtiss,et al.  Origin, development and chemistry of silica-alumina rock coatings from the semi-arid regions of the island of Hawaii , 1985 .

[120]  D. Siegel,et al.  Silicate mineral dissolution at pH 4 and near standard temperature and pressure , 1984 .

[121]  N. Breemen Genesis, Morphology, and Classification of Acid Sulfate Soils in Coastal Plains , 1982 .

[122]  R. Singer Spectral evidence for the mineralogy of high‐albedo soils and dust on Mars , 1982 .

[123]  R. Singer The composition of the Martian dark regions : observations and analysis , 1980 .

[124]  R. Singer,et al.  Mars - Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance , 1979 .

[125]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[126]  R. L. Hay,et al.  Nature and Origin of Palagonite Tuffs of the Honolulu Group on Oahu, Hawaii , 1968 .

[127]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[128]  H. Stearns,et al.  Geology and ground-water resources of the Island of Oahu, Hawaii , 1935 .