Tribonacci Numbers and Some Related Interesting Identities

The main purpose of this paper is, by using elementary methods and symmetry properties of the summation procedures, to study the computational problem of a certain power series related to the Tribonacci numbers, and to give some interesting identities for these numbers.

[1]  Taekyun Kim,et al.  Convolved Fibonacci Numbers And Their Applications , 2016, Ars Comb..

[2]  Kenan Kaygisiz,et al.  Determinantal and permanental representations of Fibonacci type numbers and polynomials , 2016 .

[3]  Zhuoyu Chen,et al.  A New Identity Involving the Chebyshev Polynomials , 2018, Mathematics.

[4]  Emrah Kilic Tribonacci Sequences With Certain Indices And Their Sums , 2008, Ars Comb..

[5]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[6]  Zhuoyu Chen,et al.  Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence , 2019, Symmetry.

[7]  Takashi Agoh,et al.  Convolution identities and lacunary recurrences for Bernoulli numbers , 2007 .

[8]  Takao Komatsu On the sum of reciprocal Tribonacci numbers , 2011, Ars Comb..

[9]  Wenpeng Zhang,et al.  Several identities involving the Fibonacci polynomials and Lucas polynomials , 2013 .

[10]  T. Apostol Introduction to analytic number theory , 1976 .

[11]  Takao Komatsu Convolution identities for Tribonacci numbers , 2018, Ars Comb..

[13]  Takashi Agoh,et al.  Higher-order recurrences for Bernoulli numbers☆ , 2009 .

[14]  K. Dilcher,et al.  Higher-order convolutions for Bernoulli and Euler polynomials , 2014 .

[15]  Convolution identities for Tribonacci numbers with symmetric formulae , 2016, 1610.02559.

[17]  Yuankui Ma,et al.  Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers , 2018, Mathematics.

[18]  Hui Wang,et al.  Generalized Humbert polynomials via generalized Fibonacci polynomials , 2017, Appl. Math. Comput..

[19]  Yi Yuan,et al.  SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS * , 2010 .