The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë

Abstract From observations by the Hubble Space Telescope, Keck II Telescope, and Gemini North Telescope, we have determined the mutual orbit of the large transneptunian object (174567) Varda and its satellite Ilmare. These two objects orbit one another in a highly inclined, circular or near-circular orbit with a period of 5.75 days and a semimajor axis of 4810 km. This orbit reveals the system mass to be (2.664 ± 0.064) × 1020 kg, slightly greater than the mass of the second most massive main-belt asteroid (4) Vesta. The dynamical mass can in turn be combined with estimates of the surface area of the system from Herschel Space Telescope thermal observations to estimate a bulk density of 1.24 - 0.35 + 0.50 g cm - 3 . Varda and Ilmare both have colors similar to the combined colors of the system, B–V = 0.886 ± 0.025 and V–I = 1.156 ± 0.029.

[1]  I. A. Steele,et al.  A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation , 2011, Nature.

[2]  J. R. Spencer,et al.  The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur , 2007, 0704.1523.

[3]  F. Henry,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.

[4]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[5]  M. W. Buie,et al.  Five New and Three Improved Mutual Orbits of Transneptunian Binaries , 2011 .

[6]  Franck Marchis,et al.  Angular momentum of binary asteroids: Implications for their possible origin ✩ , 2008 .

[7]  Robert Jedicke,et al.  The Search for Distant Objects in the Solar System Using Spacewatch , 2007 .

[8]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[9]  Joel Wm. Parker,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.

[10]  S. Cornell,et al.  A Giant Impact Origin of Pluto-Charon , 2005 .

[11]  William M. Grundy,et al.  All Bright Cold Classical KBOs are Binary , 2014 .

[12]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[13]  W. Grundy,et al.  KCTF evolution of trans-neptunian binaries: Connecting formation to observation , 2012, 1206.5841.

[14]  Michael Mommert,et al.  TNOs are Cool: A survey of the trans-Neptunian region VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm , 2013 .

[15]  M. W. Buie,et al.  The correlated colors of transneptunian binaries , 2009 .

[16]  Jason C. Cook,et al.  Thermal evolution of Kuiper belt objects, with implications for cryovolcanism , 2009 .

[17]  T. Johnson,et al.  Irregular Satellites of the Giant Planets , 2008 .

[18]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[19]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[20]  Klaus W. Hodapp,et al.  The Gemini Near‐Infrared Imager (NIRI) , 2003 .

[21]  M. W. Buie,et al.  Mutual orbits and masses of six transneptunian binaries , 2009 .

[22]  Francesca E. DeMeo,et al.  New insights on ices in Centaur and Transneptunian populations , 2011 .

[23]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[24]  A. M. Ghez,et al.  HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES , 2010, 1001.4800.

[25]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[26]  Mirel Birlan,et al.  Taxonomy of Centaurs and Trans-Neptunian Objects , 2005 .

[27]  J. R. Spencer,et al.  (42355) Typhon–Echidna: Scheduling observations for binary orbit determination , 2008 .

[28]  David J. Tholen,et al.  Masses of Nix and Hydra , 2007 .

[29]  W. Grundy,et al.  Optical and infrared colors of transneptunian objects observed with HST , 2011, 1103.2175.

[30]  F. DeMeo,et al.  Colors and taxonomy of Centaurs and trans-Neptunian objects , 2009, 0912.2621.

[31]  A. Johansen,et al.  Formation of pebble-pile planetesimals , 2014, 1408.2535.

[32]  F. DeMeo,et al.  Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: final results , 2009, 0910.0450.

[33]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[34]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[35]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[36]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[37]  Michael E. Brown,et al.  Volatile Loss and Retention on Kuiper Belt Objects , 2007 .

[38]  Jessica R. Lu,et al.  IMPROVING GALACTIC CENTER ASTROMETRY BY REDUCING THE EFFECTS OF GEOMETRIC DISTORTION , 2010 .

[39]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[40]  M. L. N. Ashby,et al.  THE RESONANT TRANS-NEPTUNIAN POPULATIONS , 2012, 1205.7065.

[41]  H. Perets,et al.  KOZAI CYCLES, TIDAL FRICTION, AND THE DYNAMICAL EVOLUTION OF BINARY MINOR PLANETS , 2008, 0809.2095.

[42]  M. Dall’ora,et al.  Photometry and taxonomy of trans-Neptunian objects and Centaurs in support of a Herschel key program , 2013 .

[43]  J. Ortiz,et al.  Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt , 2014, 1407.1214.

[44]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[45]  JOHN S. Lewis,et al.  Mass-radius relationships in icy satellites , 1979 .

[46]  John E. Chambers,et al.  Primordial Excitation and Depletion of the Main Belt , 2002 .

[47]  H. F. Levison,et al.  (47171) 1999 TC36, A transneptunian triple , 2009 .

[48]  B. A. Skiff,et al.  Mutual events in the Cold Classical transneptunian binary system Sila and Nunam , 2012, 1204.3923.

[49]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[50]  Michael E. Brown,et al.  THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25 AND THE FORMATION OF THE DWARF PLANETS , 2013, 1311.0553.

[51]  James L. Elliot,et al.  Pluto's atmosphere , 1989 .

[52]  Glen Herriot,et al.  Progress on Altair: the Gemini North adaptive optics system , 2000, Astronomical Telescopes and Instrumentation.

[53]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[54]  D. Prialnik,et al.  Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies , 2015 .

[55]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[56]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[57]  A. Bouchez,et al.  The mass, orbit, and tidal evolution of the Quaoar–Weywot system , 2012, 1211.1016.

[58]  Klaus W. Hodapp,et al.  The Gemini Near‐Infrared Imager (NIRI) , 2000, Astronomical Telescopes and Instrumentation.

[59]  Marc William Buie,et al.  Physical properties of trans-neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna , 2012 .

[60]  Douglas M. Summers,et al.  LGS AO at W.M. Keck Observatory: routine operations and remaining challenges , 2006, SPIE Astronomical Telescopes + Instrumentation.

[61]  Chile,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region - X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations , 2014, 1403.6309.

[62]  D. Trilling,et al.  UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT , 2009, 1005.1719.