DAL - A Deep Depth-aware Long-term Tracker

The best RGBD trackers provide high accuracy but are slow to run. On the other hand, the best RGB trackers are fast but clearly inferior on the RGBD datasets. In this work, we propose a deep depth-aware long-term tracker that achieves state-of-the-art RGBD tracking performance and is fast to run. We reformulate deep discriminative correlation filter (DCF) to embed the depth information into deep features. Moreover, the same depth-aware correlation filter is used for target re-detection. Comprehensive evaluations show that the proposed tracker achieves state-of-the-art performance on the Princeton RGBD, STC, and the newly-released CDTB benchmarks and runs 20 fps.

[1]  Ulrich Neumann,et al.  Depth-aware CNN for RGB-D Segmentation , 2018, ECCV.

[2]  Stefan Wermter,et al.  Continuous convolutional object tracking , 2018, ESANN.

[3]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Wei Wu,et al.  Distractor-aware Siamese Networks for Visual Object Tracking , 2018, ECCV.

[6]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Michael Felsberg,et al.  The Sixth Visual Object Tracking VOT2018 Challenge Results , 2018, ECCV Workshops.

[8]  Michael Felsberg,et al.  ATOM: Accurate Tracking by Overlap Maximization , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Majid Mirmehdi,et al.  Real-time RGB-D Tracking with Depth Scaling Kernelised Correlation Filters and Occlusion Handling , 2015, BMVC.

[10]  Lourdes Agapito,et al.  Co-fusion: Real-time segmentation, tracking and fusion of multiple objects , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Yuqing Gao,et al.  Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints , 2018, IEEE Transactions on Cybernetics.

[12]  Li,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[13]  Tianzhu Zhang,et al.  3D Part-Based Sparse Tracker with Automatic Synchronization and Registration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Jiri Matas,et al.  FuCoLoT - A Fully-Correlational Long-Term Tracker , 2018, ACCV.

[16]  Wei Wu,et al.  High Performance Visual Tracking with Siamese Region Proposal Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  L. Gool,et al.  Learning Discriminative Model Prediction for Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[19]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Shin Ishii,et al.  An occlusion-aware particle filter tracker to handle complex and persistent occlusions , 2016, Computer Vision and Image Understanding.

[21]  Jiri Matas,et al.  Object Tracking by Reconstruction With View-Specific Discriminative Correlation Filters , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Yuning Jiang,et al.  Acquisition of Localization Confidence for Accurate Object Detection , 2018, ECCV.

[24]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Majid Mirmehdi,et al.  DS-KCF: a real-time tracker for RGB-D data , 2016, Journal of Real-Time Image Processing.

[27]  Zhenyu He,et al.  The Seventh Visual Object Tracking VOT2019 Challenge Results , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[28]  Jiri Matas,et al.  CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[31]  Huchuan Lu,et al.  Learning regression and verification networks for long-term visual tracking , 2018, ArXiv.

[32]  Wei Wu,et al.  SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Jiri Matas,et al.  Depth Masked Discriminative Correlation Filter , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[34]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[35]  Fan Yang,et al.  LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Xin Zhao,et al.  GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Bernard Ghanem,et al.  TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild , 2018, ECCV.

[38]  Xiao-Yuan Jing,et al.  Context-Aware Three-Dimensional Mean-Shift With Occlusion Handling for Robust Object Tracking in RGB-D Videos , 2019, IEEE Transactions on Multimedia.

[39]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[40]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jiri Matas,et al.  How to Make an RGBD Tracker? , 2018, ECCV Workshops.

[42]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Ning An,et al.  Online RGB-D tracking via detection-learning-segmentation , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).