Development of an artificial cell, from self-organization to computation and self-reproduction

This article describes the state and the development of an artificial cell project. We discuss the experimental constraints to synthesize the most elementary cell-sized compartment that can self-reproduce using synthetic genetic information. The original idea was to program a phospholipid vesicle with DNA. Based on this idea, it was shown that in vitro gene expression could be carried out inside cell-sized synthetic vesicles. It was also shown that a couple of genes could be expressed for a few days inside the vesicles once the exchanges of nutrients with the outside environment were adequately introduced. The development of a cell-free transcription/translation toolbox allows the expression of a large number of genes with multiple transcription factors. As a result, the development of a synthetic DNA program is becoming one of the main hurdles. We discuss the various possibilities to enrich and to replicate this program. Defining a program for self-reproduction remains a difficult question as nongenetic processes, such as molecular self-organization, play an essential and complementary role. The synthesis of a stable compartment with an active interface, one of the critical bottlenecks in the synthesis of artificial cell, depends on the properties of phospholipid membranes. The problem of a self-replicating artificial cell is a long-lasting goal that might imply evolution experiments.

[1]  G. A. Benders Cloning whole bacterial genomes in yeast. , 2012, Methods in molecular biology.

[2]  Kazufumi Hosoda,et al.  Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[3]  Victor M Ugaz,et al.  PCR in a Rayleigh-Bénard convection cell. , 2002, Science.

[4]  H. Hotani,et al.  Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Size Limits of Very Small Microorganisms , 2004 .

[6]  Drew Endy,et al.  Engineering BioBrick vectors from BioBrick parts , 2008, Journal of Biological Engineering.

[7]  J Craig Venter,et al.  Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Guy Plunkett,et al.  Engineering a reduced Escherichia coli genome. , 2002, Genome research.

[9]  Martin M. Hanczyc,et al.  Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division , 2003, Science.

[10]  Robert A. Holt,et al.  Constructing large DNA segments by iterative clone recombination , 2008, Systems and Synthetic Biology.

[11]  S V Matveev,et al.  Effect of the ATP level on the overall protein biosynthesis rate in a wheat germ cell-free system. , 1996, Biochimica et biophysica acta.

[12]  J. Szostak,et al.  Coupled Growth and Division of Model Protocell Membranes , 2009, Journal of the American Chemical Society.

[13]  Pasquale Stano,et al.  The Minimal Size of Liposome‐Based Model Cells Brings about a Remarkably Enhanced Entrapment and Protein Synthesis , 2009, Chembiochem : a European journal of chemical biology.

[14]  K. Takiguchi,et al.  Morphogenesis of liposomes encapsulating actin depends on the type of actin-crosslinking. , 1999, Journal of molecular biology.

[15]  J. Swartz,et al.  Cell‐free synthesis of functional aquaporin Z in synthetic liposomes , 2009, Biotechnology and bioengineering.

[16]  A. Emons,et al.  Boekbespreking: Molecular biology of the cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Robers, D.J. Watson. Garland Publ., New York. 1989. , 1990 .

[17]  Joachim O Rädler,et al.  Using gene regulation to program DNA-based molecular devices. , 2005, Small.

[18]  Koji Kawabata,et al.  Complete Chemical Synthesis , Assembly , and Cloning of a Mycoplasma genitalium Genome , 2008 .

[19]  F. Bates,et al.  Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. , 2000, Biotechnology and bioengineering.

[20]  Raymond F. Gesteland,et al.  Life Before DNA. (Book Reviews: The RNA World. The Nature of Modern RNA Suggests a Prebiotic RNA World.) , 1993 .

[21]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[22]  D. Court,et al.  A new look at bacteriophage lambda genetic networks. , 2007, Journal of bacteriology.

[23]  Pier Luigi Luisi Chemical Aspects of Synthetic Biology , 2007 .

[24]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[25]  Jung-Won Keum,et al.  Prolonged cell‐free protein synthesis using dual energy sources: Combined use of creatine phosphate and glucose for the efficient supply of ATP and retarded accumulation of phosphate , 2007, Biotechnology and bioengineering.

[26]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[27]  D. E. Atkinson The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. , 1968, Biochemistry.

[28]  Mingyue He,et al.  Cell-free protein synthesis: applications in proteomics and biotechnology. , 2008, New biotechnology.

[29]  G. Zubay,et al.  In vitro synthesis of protein in microbial systems. , 1973, Annual review of genetics.

[30]  Martin Fussenegger,et al.  Life after the synthetic cell , 2010, Nature.

[31]  Camillo Golgi.,et al.  La doctrine du neurone. , 2009 .

[32]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[33]  J Craig Venter,et al.  One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome , 2008, Proceedings of the National Academy of Sciences.

[34]  Libchaber,et al.  Buckling microtubules in vesicles. , 1996, Physical review letters.

[35]  Michelle Montoya,et al.  β-Barrel membrane protein folding and structure viewed through the lens of α-hemolysin , 2003 .

[36]  Michelle Montoya,et al.  Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin. , 2003, Biochimica et biophysica acta.

[37]  Molenaar Jc,et al.  [From the library of the Netherlands Journal of Medicine. Rudolf Virchow: Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre; 1858]. , 2003 .

[38]  Santiago Ramon Y Cajal. Structure et connexions des neurones. , 2009 .

[39]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[40]  J. M. Wood,et al.  Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli , 2007, Molecular microbiology.

[41]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Yutetsu Kuruma,et al.  A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. , 2009, Biochimica et biophysica acta.

[43]  D. Deamer,et al.  Membrane self‐assembly processes: Steps toward the first cellular life , 2002, The Anatomical record.

[44]  Harold P. Erickson,et al.  Reconstitution of Contractile FtsZ Rings in Liposomes , 2008, Science.

[45]  R. Virchow,et al.  Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre , 1861 .

[46]  Marc Dreyfus,et al.  Troubleshooting coupled in vitro transcription–translation system derived from Escherichia coli cells: synthesis of high-yield fully active proteins , 2006, Nucleic acids research.

[47]  H. Terashima,et al.  Chapter 2 Flagellar Motility in Bacteria , 2008 .

[48]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[49]  T. Schwann,et al.  Mikroskopische Üntersuchungen über die Übereinstimmung in der Struktur und dem Wachstume der Tiere und Pflanzen , 1911, Nature.

[50]  Mark Ptashne,et al.  A Genetic Switch, Phage Lambda Revisited , 2004 .

[51]  Dieter Braun,et al.  Exponential DNA replication by laminar convection. , 2003, Physical review letters.

[52]  Tetsuya Yomo,et al.  Expression of a cascading genetic network within liposomes , 2004, FEBS letters.

[53]  Takuya Ueda,et al.  Protein synthesis by pure translation systems. , 2005, Methods.

[54]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[55]  Kirill Alexandrov,et al.  Species-independent translational leaders facilitate cell-free expression , 2009, Nature Biotechnology.

[56]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[57]  Rene Warren,et al.  Rebuilding microbial genomes. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[59]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[60]  D. Court,et al.  A New Look at Bacteriophage λ Genetic Networks , 2006 .

[61]  Samuel Karlin,et al.  Protein length in eukaryotic and prokaryotic proteomes , 2005, Nucleic acids research.

[62]  T. Peterson,et al.  Membrane protein expression: no cells required. , 2009, Trends in biotechnology.

[63]  George M Church,et al.  Synthetic biology projects in vitro. , 2006, Genome research.

[64]  A. Spirin,et al.  A continuous cell-free translation system capable of producing polypeptides in high yield. , 1988, Science.

[65]  D. E. Atkinson,et al.  Adenylate Energy Charge in Escherichia coli During Growth and Starvation , 1971, Journal of bacteriology.

[66]  E V Koonin,et al.  Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. , 1996, Current opinion in genetics & development.

[67]  D. Hinkle,et al.  Bacteriophage T7 DNA replication in vitro. Stimulation of DNA synthesis by T7 RNA polymerase. , 1980, The Journal of biological chemistry.

[68]  Ricard V Solé,et al.  Evolution and self-assembly of protocells. , 2009, The international journal of biochemistry & cell biology.

[69]  Christophe Vieu,et al.  α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. , 2011, Biochimica et biophysica acta.

[70]  Andrés Moya,et al.  Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Shirley S Daube,et al.  Compartmentalization by directional gene expression , 2010, Proceedings of the National Academy of Sciences.

[72]  J. Errington,et al.  Cytokinesis in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[73]  S. Svetina,et al.  A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction , 2004, European Biophysics Journal.

[74]  Vincent Noireaux,et al.  Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system , 2010, Journal of biological engineering.

[75]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[76]  David J F du Plessis,et al.  The Sec translocase. , 2011, Biochimica et biophysica acta.

[77]  P. Luisi,et al.  Spontaneous Protein Crowding in Liposomes: A New Vista for the Origin of Cellular Metabolism , 2010, Chembiochem : a European journal of chemical biology.

[78]  M. Isalan,et al.  Engineering Gene Networks to Emulate Drosophila Embryonic Pattern Formation , 2005, PLoS biology.

[79]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[80]  Xiaohua Hu,et al.  Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. , 2006, Molecular biology and evolution.

[81]  H. Terashima,et al.  Flagellar motility in bacteria structure and function of flagellar motor. , 2008, International review of cell and molecular biology.

[82]  S. Kauffman At Home in the Universe: The Search for the Laws of Self-Organization and Complexity , 1995 .

[83]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[84]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[85]  Sidney W. Fox The emergence of life , 1988 .

[86]  D. Frishman,et al.  Protein abundance profiling of the Escherichia coli cytosol , 2008, BMC Genomics.

[87]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Petra Schwille,et al.  Reconstitution and Anchoring of Cytoskeleton inside Giant Unilamellar Vesicles , 2008, Chembiochem : a European journal of chemical biology.

[89]  Joseph D Puglisi,et al.  Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis. , 2005, Biotechnology and bioengineering.

[90]  Janos H. Fendler,et al.  The colloidal domain: Where physics, chemistry, biology, and technology meet. By D. Fennell Evans and Hakån Wennerström. VCH Publishers, New York 1994, XXXII, 515 pp., hardcover, $65.00, DM 980, ISBN 1–56081–525–6 , 1996 .

[91]  Dong-Myung Kim,et al.  Methods for energizing cell-free protein synthesis. , 2009, Journal of bioscience and bioengineering.

[92]  J. Swartz,et al.  Energizing cell-free protein synthesis with glucose metabolism. , 2005, Biotechnology and bioengineering.

[93]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[94]  F. Crick Life Itself: Its Origin and Nature , 1981 .

[95]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[96]  R. Bar-Ziv,et al.  Principles of cell-free genetic circuit assembly , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Gould The Structure of Evolutionary Theory , 2002 .

[98]  James Swartz,et al.  Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. , 2004, Metabolic engineering.

[99]  Vincent Noireaux,et al.  Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70 , 2010, Journal of biological engineering.

[100]  P. Luisi,et al.  Polymerase chain reaction in liposomes. , 1995, Chemistry & biology.

[101]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[102]  Pasquale Stano,et al.  Giant Vesicles: Preparations and Applications , 2010, Chembiochem : a European journal of chemical biology.

[103]  Deborah Kuchnir Fygenson,et al.  Mechanics of Microtubule-Based Membrane Extension , 1997 .

[104]  E. Winfree,et al.  Construction of an in vitro bistable circuit from synthetic transcriptional switches , 2006, Molecular systems biology.

[105]  Vincent Noireaux,et al.  Toward an artificial cell based on gene expression in vesicles , 2005, Physical biology.