Algorithmic calculation of two loop Feynman diagrams

In a recent paper \cite{ft} a new powerful method to calculate Feynman diagrams was proposed. It consists in setting up a Taylor series expansion in the external momenta squared. The Taylor coefficients are obtained from the original diagram by differentiation and putting the external momenta equal to zero. It was demonstrated that by a certain conformal mapping and subsequent resummation by means of Pad\'{e} approximants it is possible to obtain high precision numerical values of the Feynman integrals in the whole cut plane. The real problem in this approach is the calculation of the Taylor coefficients for the arbitrary mass case. Since their analytic evaluation by means of CA packages uses enormous CPU and yields very lengthy expressions, we develop an algorithm with the aim to set up a FORTRAN package for their numerical evaluation. This development is guided by the possibilities offered by the formulae manipulating language FORM \cite{FORM}.